Typesetting math: 2%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

裂隙-孔隙双重介质Darcy-Forchheimer耦合流动模拟方法及工程应用

熊峰, 姜清辉, 陈胜云, 胡小川

熊峰, 姜清辉, 陈胜云, 胡小川. 裂隙-孔隙双重介质Darcy-Forchheimer耦合流动模拟方法及工程应用[J]. 岩土工程学报, 2021, 43(11): 2037-2045. DOI: 10.11779/CJGE202111010
引用本文: 熊峰, 姜清辉, 陈胜云, 胡小川. 裂隙-孔隙双重介质Darcy-Forchheimer耦合流动模拟方法及工程应用[J]. 岩土工程学报, 2021, 43(11): 2037-2045. DOI: 10.11779/CJGE202111010
XIONG Feng, JIANG Qing-hui, CHEN Sheng-yun, HU Xiao-chuan. Modeling of coupled Darcy-Forchheimer flow in fractured porous media and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2037-2045. DOI: 10.11779/CJGE202111010
Citation: XIONG Feng, JIANG Qing-hui, CHEN Sheng-yun, HU Xiao-chuan. Modeling of coupled Darcy-Forchheimer flow in fractured porous media and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2037-2045. DOI: 10.11779/CJGE202111010

裂隙-孔隙双重介质Darcy-Forchheimer耦合流动模拟方法及工程应用  English Version

基金项目: 

国家自然科学基金面上项目 42077243

中国人民解放军军事科学院国防工程研究院资助项目 2019-JKGF-1043

详细信息
    作者简介:

    熊峰(1992— ),男,副教授,博士,从事裂隙岩体渗流的教学和科研工作。E-mail:fengxiong@cug.edu.cn

    通讯作者:

    陈胜云, E-mail:chenshengyunjia@163.com

  • 中图分类号: TU43

Modeling of coupled Darcy-Forchheimer flow in fractured porous media and its engineering application

  • 摘要: 针对裂隙-孔隙双重介质非线性渗流问题,采用压力交换函数描述孔隙Darcy渗流和裂隙Forchheimer渗流耦合特性,推导了渗流方程有限体积的数值格式,并编制了相应的计算程序。通过与单裂隙和相交裂隙渗流的Frih和Arraras解对比,验证了新方法的合理性。对富水深埋裂隙型围岩隧道非线性渗流问题的计算表明,所提算法对复杂裂隙系统问题具有很强的适用性。进一步分析隧道围岩渗流特征:越接近隧道位置,水压梯度越大,流量也越大;隧道周围水压梯度呈现“底部大,顶部小”的特点,最大相差2.5倍,因此隧道底部的流量大于顶部流量;裂隙方向均匀性和密度是影响隧道围岩水力特性的重要因素。在一定水力梯度下,裂隙方向越集中于水力梯度方向且密度越大时,围岩导水性越大,隧道流量越大,越容易发生涌水事故。研究成果为裂隙型围岩隧道防水设计及工程实践提供参考。
    Abstract: Aiming to solve the nonlinear flow in fractured porous media, the coupling characteristics between Darcy flow in pores and Forchheimer flow in fractures are described by means of the pressure transfer function. The finite volume numerical form of seepage equations is derived, and the corresponding numerical code is written. The flow solution by the proposed method for single fracture and intersecting fracture is verified against Frih and Arraras’ solution. Based on this method, the fluid flow behavior of a fractured rock deep-buried tunnel is simulated, which shows it has strong applicability to flow in complex fracture system. The nonlinear flow of tunnel is also analyzed. The results show that the hydraulic gradient of surrounding rock is characterized by "large at bottom and small at top", with the maximum difference of 2.5 times. Therefore, the flow rate at the bottom of the tunnel is greater than that at the top. The distribution homogeneity and density of fracture are the important factors that affect the hydraulic behavior of fractured rock tunnels. At certain water pressure, the more fractures concentrated in the direction of water pressure and the greater the density is, the greater the surrounding rock conductivity is and the greater the flow rate of tunnel is. In this condition, water-inflow accident of tunnels will be prone to occur. The research results may provide reference for the waterproof design and engineering practice of fractured rock tunnels.
  • 各向异性是黏土的基本性质之一,分为原生各向异性和次生各向异性。针对原生各向异性对黏土力学性状的影响,许多学者对与沉积平面呈不同夹角试样进行压缩、无侧限压缩和三轴压缩等试验,发现原生各向异性对黏土变形以及强度特性的影响不容忽视。

    小应变剪切模量特性作为土的重要力学性质之一,也同样受到原生各向异性的影响。Simpson等[1]的研究表明,小应变剪切模量的原生各向异性对隧道及基坑周围土体变形的预测结果影响很大;Jovičić等[2]和吴宏伟等[3]分别针对伦敦黏土和上海软黏土进行研究,利用弯曲元测得两种土在低围压下水平和竖直方向上的最大剪切模量比值分别为1.5和1.21,说明对于不同种类黏土,原生各向异性对其小应变剪切模量的影响不尽相同。

    结构性黏土在我国东南沿海地区分布广泛,许多工程建设涉及到此类黏土,迄今已对其小应变剪切模量进行了诸多研究,但以往的研究主要考虑孔隙比、应力水平和结构损伤等对小应变剪切模量的影响[4],而考虑原生各向异性对小应变剪切模量影响的研究较少,有必要进行系统探究。

    本文对不同削样方向的湛江黏土原状试样开展不同围压下的共振柱试验,研究原生各向异性对最大动剪切模量的影响以及考虑原生各向异性的最大动剪切模量随围压演化规律的表征方法。

    土样取自湛江市某基坑内地下10~11 m,尺寸为30 cm×30 cm×30 cm原状块状样。表1为其基本物理力学指标与颗粒组成。由表1可见,湛江黏土具有较差物理性质,与软黏土相似,但力学性质较优,呈现上述特性的原因为其具有的强结构性[4]

    表  1  湛江黏土平均物理力学性质指标与颗粒组成
    Table  1.  Physical and mechanical indexes and particle composition of Zhanjiang clay
    重度γ/(kN·m-3)含水率w/%孔隙比e渗透系数K/(cm·s-1)液限wL/%塑限wP/%塑性指数IP结构屈服应力σk/kPa无侧限抗压强度/kPa灵敏度St颗粒组成/%
    >0.05/mm0.005~0.05/mm0.002~0.005/mm<0.002/mm
    17.152.981.442.73×10−859.628.131.5400143.57.28.239.520.731.6
    下载: 导出CSV 
    | 显示表格

    图1(a)为不同方向圆柱试样示意图,定义试样轴线与土体沉积平面夹角为α,即竖直方向试样为90°,水平方向试样为0°。针对α为0°,22.5°,45°,67.5°,90°方向原状样进行研究,试样规格尺寸为直径50 mm,高度100 mm的圆柱体。

    图  1  试样示意图与试验设备
    Figure  1.  Schematic diagram of specimens and test apparatus

    试验所用设备为GDS共振柱仪,如图1(b)所示。试样的边界条件为一端固定,一端自由。通过电磁驱动系统对试样逐级施加扭矩,测得试样的共振频率和对应的剪应变,试样动剪切模量由下式得到:

    G=ρ(2πfH/β)2, (1)

    式中,G为试样动剪切模量,ρ为试样密度,f为共振频率,H为试样高度,β为扭转振动频率方程特征值。

    试样在抽气饱和后安装至共振柱仪上,随后进行反压饱和,当B值达0.98后,进行固结,围压分别设定为50,100,200,300,400,500,600,700,800 kPa。试样固结完成后,进行共振柱试验。

    图2所示,不同方向试样动剪切模量G和剪应变γ的关系曲线形态与规律类似。剪切模量在小剪应变下衰减速度较小;随剪应变发展,衰减速度增大。低围压下G-γ曲线随围压增大而上移,围压超过600~700 kPa,G-γ曲线随围压增长而下移,与通常软黏土G-γ曲线大多随围压增大而单调上移规律存在明显差异,说明结构性对湛江黏土G-γ曲线规律影响较大。

    图  2  不同方向试样剪切模量G与剪应变γ关系
    Figure  2.  Relationship between shear modulus G and shear strainγ for specimens in different directions

    湛江黏土动应力-应变关系可用Hardin-Drnevich双曲线模型表征,如下式:

    τ=γa+bγ, (2)

    式中,a,b为拟合参数。式(2)可以写为

    1/G=a+bγ (3)

    式(3)中,当γ趋近于0时,得到最大动剪切模量Gmax=1/a,利用式(3)求得不同方向试样在各围压下的Gmax。为了消除孔隙比对Gmax的影响,引入孔隙比函数F(e)=1/(0.3+0.7e2)将Gmax进行归一化处理,图3为经孔隙比函数归一化的Gmax/F(e)-围压σ3曲线。随围压增大,不同方向试样Gmax/F(e)-σ3曲线均呈现先上升后下降的规律,在围压为400~500 kPa即在σk左右时,曲线出现转折。

    图  3  不同方向试样Gmax/F(e)与围压σ3的关系
    Figure  3.  Relationship between Gmax /F(e) and confining pressure σ3 for specimens in different directions

    为了更好描述原生各向异性对最大动剪切模量的影响,定义Gmax/F(e)的原生各向异性系数:

    Kα=Dα/D90°, (4)

    式中,Dα定义为α方向试样的Gmax/F(e),D90°定义为90°(竖直)方向试样的Gmax/F(e)。

    Gmax/F(e)的原生各向异性系数Kα与围压的关系如图4所示。相同围压下,Kα随方向角α变化,Kα整体上随α增大而减小,即试样的方向越靠近水平其刚度越大,说明原生各向异性对湛江黏土最大动剪切模量Gmax的影响十分显著。湛江黏土基本单元为扁平状片堆、粒状碎屑矿物与单片颗粒,上述基本单元在沉积时,其长轴更倾向于水平方向,导致颗粒间水平方向的接触更紧密,结构更强[3],进而更靠近水平方向试样的刚度更大。

    图  4  不同方向试样Kα与围压σ3的关系
    Figure  4.  Relationship between Kα and confining pressure σ3 for specimens in different directions

    当围压低于400~600 kPa时,同一方向试样Kα随围压增长基本保持恒定,K,K22.5°,K45°,K67.5°,K90°分别为1.314,1.279,1.148,1.045,1;当围压高于400~600 kPa时,同一方向试样Kα随围压增长呈明显减小趋势,不同方向试样的Gmax/F(e)差异减小。说明围压低于σk时,围压的增大几乎不影响原生各向异性对Gmax的影响,但当围压超过σk后,围压的增大减弱了原生各向异性对Gmax的影响。文献[2]中伦敦黏土在围压超过屈服应力后,其水平与竖直方向试样的最大剪切模量的差异随围压增长也呈减小趋势,与本文试验结果一致。

    图3中出现Gmax/F(e)随围压增大呈先上升后下降的特殊现象,文献[4]认为Gmax同时受到平均有效应力、孔隙比和结构损伤的影响,采用该文的表征方法对试验结果进行分析,具体的表达形式如下所示:

    Gmax/F(e)=A(1+(σmpa)n)1+B(1+(σmpa)n)(kr+1kr1+(ησmpc)λ) (5)

    式中 A,B,n,kr,ηλ为反映各种应力历史和土体性质的参数;σm为围压;pa为标准大气压;pc为表观前期固结压力即结构屈服应力σk,不同方向试样压缩试验得到的σk差异较小,均取400 kPa。

    采用式(5)将不同方向试样Gmax/F(e)与围压的关系进行定量表征。从图4可得,高应力下各向异性对试样的Gmax/F(e)影响减弱,可假定不同方向试样Gmax/F(e)极限值相同。最终将试验数据与拟合曲线一同绘制于图5,发现拟合效果很好,拟合参数见表2

    图  5  不同方向试样的Gmax/F(e)与固结围压lgσ3关系曲线
    Figure  5.  Curves of Gmax/F(e) and confining pressure lgσ3 of specimens in different directions
    表  2  不同方向试样拟合参数
    Table  2.  Fitting parameters of specimens in different directions
    αA/MPaBnkrηλR2
    0°39.924890.166780.543090.350920.564336.429980.99251
    22.5°37.899510.159990.582640.354620.564266.371470.99075
    45°33.763280.151680.546420.377400.554026.384730.99432
    67.5°31.154760.157610.562540.424990.608896.077370.99727
    90°29.754220.157430.560670.444480.577506.056690.99835
    下载: 导出CSV 
    | 显示表格

    分析表2中拟合参数与试样方向的关系,可得参数A,kr,λ和试样轴线与土体沉积平面夹角α呈线性关系(图6),参数B,n,ηα增大分别保持在0.1587,0.5591,0.5738上下,且波动范围较小(参数B,n,η的标准差S分别为0.005455,0.01570和0.02131)。

    图  6  拟合参数A,krλ与试样方向的关系
    Figure  6.  Relationship between fitting parameters A, kr and λ with directions of specimens

    图6中参数A,kr,λ的拟合方程和参数B,n,η的平均值同时代入式(5),得到考虑原生各向异性的最大动剪切模量的表征方法:

    Gmax/F(e)=(c1α+c2)(1+(σmpa)n)1+B(1+(σmpa)n)·((d1α+d2)+1(d1α+d2)1+(ησmpc)(e1α+e2)) (6)

    式中σm为围压;α表示试样的方向,为试样轴线与土体沉积平面夹角;pa为标准大气压,取101.325 kPa;pcσk,取400 kPa;B=0.1587,n=0.5591,η=0.5738;c1=−0.1204,c2=39.9166;d1=1.144×10−3,d2=0.3390;e1=−4.625×10−3,e2=6.4722。

    (1)在同一围压下,不同α试样经孔隙比函数归一化的最大动剪切模量Gmax/F(e)与90°方向试样Gmax/F(e)的比值Kαα增大而减小。当围压低于和高于σk时,同一α试样Kα随围压增长分别呈基本保持恒定与明显减小趋势,说明当围压低于σk时,围压几乎不影响原生各向异性对Gmax影响,围压超过σk后,不同方向的Gmax/F(e)差异减小,围压的增大减弱了原生各向异性对Gmax的影响。

    (2)受固结压硬和结构损伤的影响,湛江黏土的Gmax/F(e)变化规律与通常软黏土试验结果不同,不同方向试样的Gmax/F(e)随围压增大均呈先增大后减小规律,当围压在σk左右时出现转折。

    (3)基于采用考虑结构损伤的公式可很好拟合湛江黏土不同方向试样Gmax与围压关系曲线,提出了考虑原生各向异性影响的Gmax演化规律表征方法。

  • 图  1   裂隙-孔隙双重介质离散示意图

    Figure  1.   Schematic diagram of fractured porous media

    图  2   算例1计算模型

    Figure  2.   Computational model for single fracture

    图  3   本文模型计算的压力分布

    Figure  3.   Distribution of pressure calculated by proposed method

    图  4   单裂隙模型的裂隙速度分布

    Figure  4.   Distribution of fracture velocity of single fracture model

    图  5   算例1网格大小与误差的关系

    Figure  5.   Relationship between error and mesh size

    图  6   算例1单元比率与误差的关系

    Figure  6.   Relationship between error and element ratio

    图  7   相交裂隙计算模型

    Figure  7.   Computational model for intersecting fracture

    图  8   相交裂隙1新方法计算的压力

    Figure  8.   Distribution of pressure calculated by proposed method for intersecting fracture case 1

    图  9   相交裂隙2新方法计算的压力

    Figure  9.   Distribution of pressure calculated by proposed method for intersecting fracture case 2

    图  10   相交裂隙网格大小与误差的关系

    Figure  10.   Relationship between error and mesh size for intersecting fracture model

    图  11   相交裂隙单元比率与误差的关系

    Figure  11.   Relationshp between error and mesh ratio for intersecting fracture model

    图  12   隧道模型尺寸及边界条件

    Figure  12.   Dimension and boundary of tunnel model

    图  13   不同κ值下隧道围岩[30, 50]段压力分布

    Figure  13.   Distribution of water pressure of tunnel rock at [30, 50] range under different values of κ

    图  14   不同κ值下裂隙流量分布

    Figure  14.   Distribution of fracture flow rate under different values of κ

    图  15   不同裂隙数量下隧道围岩[30, 50]段压力分布

    Figure  15.   Distribution of water pressure of tunnel rock at [30, 50] range under different fracture numbers

    图  16   不同裂隙数量下裂隙流量分布

    Figure  16.   Distribution of fracture flow rate under different fracture numbers

    表  1   裂隙几何参数

    Table  1   Geometrical parameters of fractures

    长度/m开度/mm倾角数量N
    lminlmaxλbμκ
    1.060.01.00.150°[0,8][10,300]
    下载: 导出CSV
  • [1]

    LEI Q H, LATHAM J P, TSANG C F. The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks[J]. Computers and Geotechnics, 2017, 85: 151-176. doi: 10.1016/j.compgeo.2016.12.024

    [2] 毛昶熙, 陈平, 李祖贻, 等. 裂隙岩体渗流计算方法研究[J]. 岩土工程学报, 1991, 13(6): 1-10. doi: 10.3321/j.issn:1000-4548.1991.06.001

    MAO Chang-xi, CHEN Ping, LI Zu-yi, et al. Study on computation methods of seepage flow in fractured rock masses[J]. Chinese Journal of Geotechnical Engineering, 1991, 13(6): 1-10. (in Chinese) doi: 10.3321/j.issn:1000-4548.1991.06.001

    [3] 张有天. 从岩石水力学观点看几个重大工程事故[J]. 水利学报, 2003, 34(5): 1-10. doi: 10.3321/j.issn:0559-9350.2003.05.001

    ZHANG You-tian. Analysis on several catastrophic failures of hydraulic projects in view of rock hydraulics[J]. Journal of Hydraulic Engineering, 2003, 34(5): 1-10. (in Chinese) doi: 10.3321/j.issn:0559-9350.2003.05.001

    [4] 周志芳, 王锦国. 裂隙介质水动力学[M]. 北京: 中国水利水电出版社, 2004.

    ZHOU Zhi-fang, WANG Jin-guo. Theory of Dynamics of Fluids in Fractured Media[M]. 2004. (in Chinese)

    [5]

    HUYAKORN P S, LESTER B H, FAUST C R. Finite element techniques for modeling groundwater flow in fractured aquifers[J]. Water Resources Research, 1983, 19(4): 1019-1035. doi: 10.1029/WR019i004p01019

    [6]

    ATHANI S S, SHIVAMANTH , SOLANKI C H, et al. Seepage and stability analyses of earth dam using finite element method[J]. Aquatic Procedia, 2015, 4: 876-883. doi: 10.1016/j.aqpro.2015.02.110

    [7]

    MARYŠKA J, SEVERÝN O, VOHRALÍK M. Numerical simulation of fracture flow with a mixed-hybrid FEM stochastic discrete fracture network model[J]. Computational Geosciences, 2005, 8(3): 217-234. doi: 10.1007/s10596-005-0152-3

    [8] 王恩志. 岩体裂隙的网络分析及渗流模型[J]. 岩石力学与工程学报, 1993, 12(3): 214-221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199303002.htm

    WANG En-zhi. Network analysis and seepage flow model of fractured rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 1993, 12(3): 214-221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199303002.htm

    [9] 何杨, 柴军瑞, 唐志立, 等. 三维裂隙网络非稳定渗流数值分析[J]. 水动力学研究与进展A辑, 2007, 22(3): 338-344. doi: 10.3969/j.issn.1000-4874.2007.03.011

    HE Yang, CHAI Jun-rui, TANG Zhi-li, et al. Numerical analysis of 3-D unsteady seepage through fracture network in rock mass[J]. Journal of Hydrodynamics (SerA), 2007, 22(3): 338-344. (in Chinese) doi: 10.3969/j.issn.1000-4874.2007.03.011

    [10] 李海枫, 张国新, 朱银邦. 裂隙岩体三维渗流网络搜索及稳定渗流场分析[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3447-3454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2004.htm

    LI Hai-feng, ZHANG Guo-xin, ZHU Yin-bang. Three-dimensional seepage network searching of fractured rock mass and steady seepage field analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3447-3454. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2004.htm

    [11]

    ZIMMERMAN R W, HADGU T, BODVARSSON G S. A new lumped-parameter model for flow in unsaturated dual-porosity media[J]. Advances in Water Resources, 1996, 19(5): 317-327. doi: 10.1016/0309-1708(96)00007-3

    [12]

    PERATTA A, POPOV V. A new scheme for numerical modelling of flow and transport processes in 3D fractured porous media[J]. Advances in Water Resources, 2006, 29(1): 42-61. doi: 10.1016/j.advwatres.2005.05.004

    [13] 张奇华, 徐威, 殷佳霞. 二维任意裂隙网络裂隙-孔隙渗流模型的两种解法[J]. 岩石力学与工程学报, 2012, 31(2): 217-227. doi: 10.3969/j.issn.1000-6915.2012.02.001

    ZHANG Qi-hua, XU Wei, YIN Jia-xia. Two-dimensional fractured porous flow model of arbitrary fracture network and its two solution methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 217-227. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.02.001

    [14] 阙云, 熊汉, 刘慧芬, 等. 基于非饱和大孔隙流双重介质模型的浸水边坡水力响应数值模拟[J]. 工程科学与技术, 2020, 52(6): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202006012.htm

    QUE Yun, XIONG Han, LIU Hui-fen, et al. Numerical simulation of hydraulic response of immersed slope based on dual-permeability model of unsaturated macropore flow[J]. Advanced Engineering Sciences, 2020, 52(6): 102-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202006012.htm

    [15] 宋晓晨, 徐卫亚. 非饱和带裂隙岩体渗流的特点和概念模型[J]. 岩土力学, 2004, 25(3): 407-411. doi: 10.3969/j.issn.1000-7598.2004.03.016

    SONG Xiao-chen, XU Wei-ya. Features and conceptual models of flow in fractured vadose zone[J]. Rock and Soil Mechanics, 2004, 25(3): 407-411. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.03.016

    [16]

    LANG P S, PALUSZNY A, ZIMMERMAN R W. Permeability tensor of three-dimensional fractured porous rock and a comparison to trace map predictions[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(8): 6288-6307. doi: 10.1002/2014JB011027

    [17] 蒋中明, 肖喆臻, 唐栋. 坝基岩体裂隙渗流效应数值模拟方法[J]. 水利学报, 2020, 51(10): 1289-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202010011.htm

    JIANG Zhong-ming, XIAO Zhe-zhen, TANG Dong. Numerical analysis method of fluid flow in fractured rock mass of dam foundation[J]. Journal of Hydraulic Engineering, 2020, 51(10): 1289-1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202010011.htm

    [18]

    FRIH N, ROBERTS J E, SAADA A. Modeling fractures as interfaces: a model for Forchheimer fractures[J]. Computational Geosciences, 2008, 12(1): 91-104. doi: 10.1007/s10596-007-9062-x

    [19]

    ARRARÁS A, GASPAR F J, PORTERO L, et al. Geometric multigrid methods for Darcy-Forchheimer flow in fractured porous media[J]. Computers & Mathematics With Applications, 2019, 78(9): 3139-3151.

    [20] 姚池, 邵玉龙, 杨建华, 等. 非线性渗流对裂隙岩体渗流传热过程的影响[J]. 岩土工程学报, 2020, 42(6): 1050-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006011.htm

    YAO Chi, SHAO Yu-long, YANG Jian-hua, et al. Effect of nonlinear seepage on flow and heat transfer process of fractured rocks[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1050-1058. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006011.htm

    [21]

    HAJIBEYGI H, KARVOUNIS D, JENNY P. A hierarchical fracture model for the iterative multiscale finite volume method[J]. Journal of Computational Physics, 2011, 230(24): 8729-8743.

    [22]

    XIONG F, WEI W, XU C S, et al. Experimental and numerical investigation on nonlinear flow behaviour through three dimensional fracture intersections and fracture networks[J]. Computers and Geotechnics, 2020, 121: 103446.

    [23]

    KARIMI-FARD M, DURLOFSKY L J, AZIZ K. An efficient discrete-fracture model applicable for general-purpose reservoir simulators[J]. SPE Journal, 2004, 9(2): 227-236.

  • 期刊类型引用(2)

    1. 高志傲,孔令伟,王双娇,黄珏皓,赵浩武. 循环荷载下不同裂隙方向饱和原状膨胀土动力特性试验研究. 岩土工程学报. 2025(04): 736-748 . 本站查看
    2. 简涛,孔令伟,柏巍,王俊涛,刘炳恒. 含水率对原状黄土小应变剪切模量影响的试验研究. 岩土工程学报. 2022(S1): 160-165 . 本站查看

    其他类型引用(1)

图(16)  /  表(1)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  46
  • PDF下载量:  191
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-03-22
  • 网络出版日期:  2022-12-01
  • 刊出日期:  2021-10-31

目录

/

返回文章
返回