Modeling of coupled Darcy-Forchheimer flow in fractured porous media and its engineering application
-
摘要: 针对裂隙-孔隙双重介质非线性渗流问题,采用压力交换函数描述孔隙Darcy渗流和裂隙Forchheimer渗流耦合特性,推导了渗流方程有限体积的数值格式,并编制了相应的计算程序。通过与单裂隙和相交裂隙渗流的Frih和Arraras解对比,验证了新方法的合理性。对富水深埋裂隙型围岩隧道非线性渗流问题的计算表明,所提算法对复杂裂隙系统问题具有很强的适用性。进一步分析隧道围岩渗流特征:越接近隧道位置,水压梯度越大,流量也越大;隧道周围水压梯度呈现“底部大,顶部小”的特点,最大相差2.5倍,因此隧道底部的流量大于顶部流量;裂隙方向均匀性和密度是影响隧道围岩水力特性的重要因素。在一定水力梯度下,裂隙方向越集中于水力梯度方向且密度越大时,围岩导水性越大,隧道流量越大,越容易发生涌水事故。研究成果为裂隙型围岩隧道防水设计及工程实践提供参考。
-
关键词:
- 裂隙-孔隙双重介质 /
- Darcy-Forchheimer耦合流动 /
- 有限体积法 /
- 隧道非线性渗流
Abstract: Aiming to solve the nonlinear flow in fractured porous media, the coupling characteristics between Darcy flow in pores and Forchheimer flow in fractures are described by means of the pressure transfer function. The finite volume numerical form of seepage equations is derived, and the corresponding numerical code is written. The flow solution by the proposed method for single fracture and intersecting fracture is verified against Frih and Arraras’ solution. Based on this method, the fluid flow behavior of a fractured rock deep-buried tunnel is simulated, which shows it has strong applicability to flow in complex fracture system. The nonlinear flow of tunnel is also analyzed. The results show that the hydraulic gradient of surrounding rock is characterized by "large at bottom and small at top", with the maximum difference of 2.5 times. Therefore, the flow rate at the bottom of the tunnel is greater than that at the top. The distribution homogeneity and density of fracture are the important factors that affect the hydraulic behavior of fractured rock tunnels. At certain water pressure, the more fractures concentrated in the direction of water pressure and the greater the density is, the greater the surrounding rock conductivity is and the greater the flow rate of tunnel is. In this condition, water-inflow accident of tunnels will be prone to occur. The research results may provide reference for the waterproof design and engineering practice of fractured rock tunnels. -
-
表 1 裂隙几何参数
Table 1 Geometrical parameters of fractures
长度/m 开度/mm 倾角 数量N lmin lmax λ b μ κ 1.0 60.0 1.0 0.1 50° [0,8] [10,300] -
[1] LEI Q H, LATHAM J P, TSANG C F. The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks[J]. Computers and Geotechnics, 2017, 85: 151-176. doi: 10.1016/j.compgeo.2016.12.024
[2] 毛昶熙, 陈平, 李祖贻, 等. 裂隙岩体渗流计算方法研究[J]. 岩土工程学报, 1991, 13(6): 1-10. doi: 10.3321/j.issn:1000-4548.1991.06.001 MAO Chang-xi, CHEN Ping, LI Zu-yi, et al. Study on computation methods of seepage flow in fractured rock masses[J]. Chinese Journal of Geotechnical Engineering, 1991, 13(6): 1-10. (in Chinese) doi: 10.3321/j.issn:1000-4548.1991.06.001
[3] 张有天. 从岩石水力学观点看几个重大工程事故[J]. 水利学报, 2003, 34(5): 1-10. doi: 10.3321/j.issn:0559-9350.2003.05.001 ZHANG You-tian. Analysis on several catastrophic failures of hydraulic projects in view of rock hydraulics[J]. Journal of Hydraulic Engineering, 2003, 34(5): 1-10. (in Chinese) doi: 10.3321/j.issn:0559-9350.2003.05.001
[4] 周志芳, 王锦国. 裂隙介质水动力学[M]. 北京: 中国水利水电出版社, 2004. ZHOU Zhi-fang, WANG Jin-guo. Theory of Dynamics of Fluids in Fractured Media[M]. 2004. (in Chinese)
[5] HUYAKORN P S, LESTER B H, FAUST C R. Finite element techniques for modeling groundwater flow in fractured aquifers[J]. Water Resources Research, 1983, 19(4): 1019-1035. doi: 10.1029/WR019i004p01019
[6] ATHANI S S, SHIVAMANTH , SOLANKI C H, et al. Seepage and stability analyses of earth dam using finite element method[J]. Aquatic Procedia, 2015, 4: 876-883. doi: 10.1016/j.aqpro.2015.02.110
[7] MARYŠKA J, SEVERÝN O, VOHRALÍK M. Numerical simulation of fracture flow with a mixed-hybrid FEM stochastic discrete fracture network model[J]. Computational Geosciences, 2005, 8(3): 217-234. doi: 10.1007/s10596-005-0152-3
[8] 王恩志. 岩体裂隙的网络分析及渗流模型[J]. 岩石力学与工程学报, 1993, 12(3): 214-221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199303002.htm WANG En-zhi. Network analysis and seepage flow model of fractured rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 1993, 12(3): 214-221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199303002.htm
[9] 何杨, 柴军瑞, 唐志立, 等. 三维裂隙网络非稳定渗流数值分析[J]. 水动力学研究与进展A辑, 2007, 22(3): 338-344. doi: 10.3969/j.issn.1000-4874.2007.03.011 HE Yang, CHAI Jun-rui, TANG Zhi-li, et al. Numerical analysis of 3-D unsteady seepage through fracture network in rock mass[J]. Journal of Hydrodynamics (SerA), 2007, 22(3): 338-344. (in Chinese) doi: 10.3969/j.issn.1000-4874.2007.03.011
[10] 李海枫, 张国新, 朱银邦. 裂隙岩体三维渗流网络搜索及稳定渗流场分析[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3447-3454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2004.htm LI Hai-feng, ZHANG Guo-xin, ZHU Yin-bang. Three-dimensional seepage network searching of fractured rock mass and steady seepage field analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3447-3454. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2004.htm
[11] ZIMMERMAN R W, HADGU T, BODVARSSON G S. A new lumped-parameter model for flow in unsaturated dual-porosity media[J]. Advances in Water Resources, 1996, 19(5): 317-327. doi: 10.1016/0309-1708(96)00007-3
[12] PERATTA A, POPOV V. A new scheme for numerical modelling of flow and transport processes in 3D fractured porous media[J]. Advances in Water Resources, 2006, 29(1): 42-61. doi: 10.1016/j.advwatres.2005.05.004
[13] 张奇华, 徐威, 殷佳霞. 二维任意裂隙网络裂隙-孔隙渗流模型的两种解法[J]. 岩石力学与工程学报, 2012, 31(2): 217-227. doi: 10.3969/j.issn.1000-6915.2012.02.001 ZHANG Qi-hua, XU Wei, YIN Jia-xia. Two-dimensional fractured porous flow model of arbitrary fracture network and its two solution methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 217-227. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.02.001
[14] 阙云, 熊汉, 刘慧芬, 等. 基于非饱和大孔隙流双重介质模型的浸水边坡水力响应数值模拟[J]. 工程科学与技术, 2020, 52(6): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202006012.htm QUE Yun, XIONG Han, LIU Hui-fen, et al. Numerical simulation of hydraulic response of immersed slope based on dual-permeability model of unsaturated macropore flow[J]. Advanced Engineering Sciences, 2020, 52(6): 102-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202006012.htm
[15] 宋晓晨, 徐卫亚. 非饱和带裂隙岩体渗流的特点和概念模型[J]. 岩土力学, 2004, 25(3): 407-411. doi: 10.3969/j.issn.1000-7598.2004.03.016 SONG Xiao-chen, XU Wei-ya. Features and conceptual models of flow in fractured vadose zone[J]. Rock and Soil Mechanics, 2004, 25(3): 407-411. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.03.016
[16] LANG P S, PALUSZNY A, ZIMMERMAN R W. Permeability tensor of three-dimensional fractured porous rock and a comparison to trace map predictions[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(8): 6288-6307. doi: 10.1002/2014JB011027
[17] 蒋中明, 肖喆臻, 唐栋. 坝基岩体裂隙渗流效应数值模拟方法[J]. 水利学报, 2020, 51(10): 1289-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202010011.htm JIANG Zhong-ming, XIAO Zhe-zhen, TANG Dong. Numerical analysis method of fluid flow in fractured rock mass of dam foundation[J]. Journal of Hydraulic Engineering, 2020, 51(10): 1289-1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202010011.htm
[18] FRIH N, ROBERTS J E, SAADA A. Modeling fractures as interfaces: a model for Forchheimer fractures[J]. Computational Geosciences, 2008, 12(1): 91-104. doi: 10.1007/s10596-007-9062-x
[19] ARRARÁS A, GASPAR F J, PORTERO L, et al. Geometric multigrid methods for Darcy-Forchheimer flow in fractured porous media[J]. Computers & Mathematics With Applications, 2019, 78(9): 3139-3151.
[20] 姚池, 邵玉龙, 杨建华, 等. 非线性渗流对裂隙岩体渗流传热过程的影响[J]. 岩土工程学报, 2020, 42(6): 1050-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006011.htm YAO Chi, SHAO Yu-long, YANG Jian-hua, et al. Effect of nonlinear seepage on flow and heat transfer process of fractured rocks[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1050-1058. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006011.htm
[21] HAJIBEYGI H, KARVOUNIS D, JENNY P. A hierarchical fracture model for the iterative multiscale finite volume method[J]. Journal of Computational Physics, 2011, 230(24): 8729-8743.
[22] XIONG F, WEI W, XU C S, et al. Experimental and numerical investigation on nonlinear flow behaviour through three dimensional fracture intersections and fracture networks[J]. Computers and Geotechnics, 2020, 121: 103446.
[23] KARIMI-FARD M, DURLOFSKY L J, AZIZ K. An efficient discrete-fracture model applicable for general-purpose reservoir simulators[J]. SPE Journal, 2004, 9(2): 227-236.
-
期刊类型引用(8)
1. 王亚军,白晨帆,蒋应军,李瀚盛,范江涛,袁可佳. 挤密桩对大厚度黄土地基浸水沉降的影响. 铁道建筑. 2025(02): 126-133 . 百度学术
2. 李琳,王家鼎,谷琪,张登飞,焦少通. 古土壤层间富水对黄土场地湿陷性的影响. 西北大学学报(自然科学版). 2024(01): 72-83 . 百度学术
3. 黄华,刘瑞阳,刘笑笑,柳明亮. 黄土湿陷特性及其改性方法研究进展. 建筑科学与工程学报. 2024(02): 1-16 . 百度学术
4. 雷勇. 高压喷射气体劈裂湿陷性黄土效果研究. 铁道建筑技术. 2024(06): 20-24 . 百度学术
5. 胡锦方,潘亮,张爱军,任文渊,梁志超. 棉秆纤维EPS颗粒轻量土配合比设计. 水利水运工程学报. 2023(01): 112-119 . 百度学术
6. 徐硕昌,刘德仁,王旭,安政山,张转军,金芯. 重塑非饱和黄土浸水入渗规律的模型试验研究. 水利水运工程学报. 2023(01): 140-148 . 百度学术
7. 牛丽思,张爱军,王毓国,任文渊,张婉. 湿度和密度变化下伊犁黄土的压缩和湿陷特性. 水力发电学报. 2021(02): 167-176 . 百度学术
8. 王文辉,何毅,张立峰,陈有东,唐源蔚,邱丽莎,张新秀. 基于PS-InSAR和GeoDetector的兰州主城区地表变形监测与驱动力分析. 兰州大学学报(自然科学版). 2021(03): 382-388+394 . 百度学术
其他类型引用(8)