T-EMSD-based p-y curve of laterally loaded piles in clay considering small-strain behavior
-
摘要: 国际主流规范API推荐p-y曲线分析海上风电钢管桩基础的水平非线性响应。该p-y曲线通过单参数刻画了土体应力应变的发展规律从而间接控制桩土非线性响应。但因过度简化,在长期使用中已暴露出低估桩侧承载力,且无法准确预测桩土初始刚度等问题。为此,首先定义了含土体小应变特性的应力应变曲线,再基于虚拟加载上限法获得考虑该土体应力应变关系的数值p-y骨干曲线。结合参数分析,拟合得到二维p-y骨干曲线表达式。进一步结合三维极限承载力系数、桩土初始刚度和剪应变系数,将p-y骨干曲线拟三维化,并分别与三维有限元和工程实例对比验证其合理性。与API规范相比,该p-y骨干曲线不但准确预测桩侧承载力,对变形控制极严的海上风电钢管桩基础而言,其更显著优点在于通过考虑土体小应变特性实现准确预测桩土初始刚度。Abstract: The international popular API code recommends the p-y curve method to analyze the nonlinear behavior of offshore wind turbine (OWT) steel pipe piles. The p-y curve controls the pile-soil nonlinear response only through one parameter regarding the development of stress-strain relation of soils. This over-simplification results in the inaccurate evaluation of the lateral initial stiffness of pile-soil and the underestimation of the bearing capacity. Therefore, the stress-strain curve with soil small-strain behavior is first introduced to achieve a numerical p-y backbone curve by using the total-displacement-loading extended mobilized strength design method (T-EMSD). The expression for the two-dimensional p-y backbone curve is then fitted from the numerical results. The three-dimensional effect of the proposed p-y curve is further considered by incorporating the three-dimensional ultimate capacity factor, the initial subgrade modulus and the compatibility factor. The rationality of the proposed p-y curve is verified against the results from the three-dimensional finite-element analysis and field tests. Compared with API code, the proposed p-y curve can provide a more reasonable prediction for both the bearing capacity and the initial stiffness of pile-soil by considering the soil small-strain behavior, which is a significant advantage for the OWT pile foundation with strict deformation control.
-
Keywords:
- laterally loaded pile /
- soft clay /
- p-y curve /
- T-EMSD method /
- small strain
-
-
表 1 剪应变系数
Table 1 Values of compatibility factor
表 2 现场试验1土体参数
Table 2 Soil parameters of field test Case 1
深度z/D /kPa /MPa /(10-4) /MPa 2 18 10 1 1.8 4 20 14 1 2 表 3 现场试验2土体参数
Table 3 Soil parameters of field test Case 2
深度z/m /kPa /MPa /(10-4) /MPa 3.6 13 12 4 0.87 6.3 15 15 4 1.0 -
[1] DNV. Design of Offshore Wind Turbine Structures: DNV—OS—J101[S]. 2014.
[2] American Petroleum Institute (API). Recommended practice for planning, designing and constructing fixed offshore platforms—working stress design[C]//API 2A-WSD, twenty-second ed. Washington, D.C, 2014.
[3] MATLOCK H S. Correlation for design of laterally loaded piles in soft clay[C]//Proceedings Second Annual Offshore Technology Conference. Houston, 1970: 1204.
[4] 朱斌, 熊根, 刘晋超, 等. 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35(10): 1807-1815. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310007.htm ZHU Bin, XIONG Gen, LIU Jin-chao, et al. Centrifuge modelling of a large-diameter single pile under lateral loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1807-1815. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310007.htm
[5] 王卫, 闫俊义, 刘建平. 基于海上风电试桩数据的大直径桩p-y模型研究[J]. 岩土工程学报, 2021, 43(6): 1131-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202106023.htm WANG Wei, YANG Jun-yi, LIU Jian-ping. Study on p-y models of large-diameter pile foundation based on in-situ tests of offshore wind power[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1131-1138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202106023.htm
[6] 黄茂松, 俞剑, 张陈蓉. 基于应变路径法的黏土中水平受荷桩p-y曲线[J]. 岩土工程学报, 2015, 37(3): 400-409. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503003.htm HUANG Mao-song, YU Jian, ZHANG Chen-rong. p-y curves of laterally loaded piles in clay based on strain path approach[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 400-409. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503003.htm
[7] ASHOUR M, NORRIS G. Modeling lateral soil-pile response based on soil-pile interaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5): 420-428. doi: 10.1061/(ASCE)1090-0241(2000)126:5(420)
[8] OSMAN A S, BOLTON M D. Simple plasticity-based prediction of the undrained settlement of shallow circular foundations on clay[J]. Géotechnique, 2005, 55(6): 435-447. doi: 10.1680/geot.2005.55.6.435
[9] YU J, HUANG M S, LI S, et al. Load-displacement and upper-bound solutions of a loaded laterally pile in clay based on a total-displacement-loading EMSD method[J]. Computers and Geotechnics, 2017, 83: 64-76. doi: 10.1016/j.compgeo.2016.10.025
[10] YU J, ZHU J L, SHEN K M, et al. Bounding-surface-based p-y model for laterally loaded piles in undrained clay[J]. Ocean Engineering, 2020, 216: 107997. doi: 10.1016/j.oceaneng.2020.107997
[11] BENZ T, VERMEER P A, SCHWAB R. A small-strain overlay model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(1): 25-44. doi: 10.1002/nag.701
[12] KLAR A, OSMAN A S. Load-displacement solutions for piles and shallow foundations based on deformation fields and energy conservation[J]. Géotechnique, 2008, 58(7): 581-589. doi: 10.1680/geot.2008.58.7.581
[13] 黄茂松, 李森, 俞剑. 水平受荷桩的弹性有限元虚拟加载上限分析[J]. 岩土力学, 2016, 37(8): 2399-2403, 2410. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608036.htm HUANG Mao-song, LI Sen, YU Jian. Analysis of laterally loaded pile by elastic finite element based EMSD method[J]. Rock and Soil Mechanics, 2016, 37(8): 2399-2403, 2410. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608036.htm
[14] LI S, YU J, HUANG M S, et al. Application of T-EMSD based p-y curves in the three-dimensional analysis of laterally loaded pile in undrained clay[J]. Ocean Engineering, 2020, 206: 107256. doi: 10.1016/j.oceaneng.2020.107256
[15] LI S, HUANG M S, YU J. Continuous field based upper-bound analysis for the undrained bearing capacity of strip footings resting near clay slopes with linearly increased strength[J]. Computers and Geotechnics, 2019, 105: 168-182. doi: 10.1016/j.compgeo.2018.10.002
[16] LI S, YU J, HUANG M S, et al. Upper bound analysis of rectangular surface footings on clay with linearly increasing strength[J]. Computers and Geotechnics, 2021, 129: 103896. doi: 10.1016/j.compgeo.2020.103896
[17] HUANG M S, LI S, YU J, et al. Continuous field based upper bound analysis for three-dimensional tunnel face stability in undrained clay[J]. Computers and Geotechnics, 2018, 94: 207-213. doi: 10.1016/j.compgeo.2017.09.014
[18] KLAR A. Upper bound for cylinder movement using “elastic” fields and its possible application to pile deformation analysis[J]. International Journal of Geomechanics, 2008, 8(2): 162-167. doi: 10.1061/(ASCE)1532-3641(2008)8:2(162)
[19] USACE. Settlement analysis, Engineer Manual EM 1110-1-1904. U.S. Army Corps of Engineers: Washington, D.C. 1990.
[20] GEORGIADIS M, ANAGNOSTOPOULOS C, SAFLEKOU S. Cyclic lateral loading of piles in soft clay[J]. Geotechnical Engineering, 1992, 23(1): 47-60.
[21] JEANJEAN P. Re-assessment of p-y curves for soft clays from centrifuge testing and finite element modeling[C]//Offshore Technology Conference. Houston, 2009.
[22] DUNNAVANT T W, O'NEILL M W. Experimental p-y model for submerged, stiff clay[J]. Journal of Geotechnical Engineering, 1989, 115(1): 95-114. doi: 10.1061/(ASCE)0733-9410(1989)115:1(95)
[23] BYRNE B W, HOULSBY G T, BURD H J, et al. PISA design model for monopiles for offshore wind turbines: application to a stiff glacial clay till[J]. Géotechnique, 2020, 70(11): 1030-1047. doi: 10.1680/jgeot.18.P.255
[24] ZHANG C R, YU J, HUANG M S. Winkler load-transfer analysis for laterally loaded piles[J]. Canadian Geotechnical Journal, 2016, 53(7): 1110-1124. doi: 10.1139/cgj-2015-0394
[25] YU J, HUANG M S, ZHANG C R. Three-dimensional upper-bound analysis for ultimate bearing capacity of laterally loaded rigid pile in undrained clay[J]. Canadian Geotechnical Journal, 2015, 52(11): 1775-1790. doi: 10.1139/cgj-2014-0390
[26] ZHANG Y H, ANDERSEN K H, TEDESCO G. Ultimate bearing capacity of laterally loaded piles in clay-Some practical considerations[J]. Marine Structures, 2016, 50: 260-275. doi: 10.1016/j.marstruc.2016.09.002
[27] FAN C C, LONG J H. Assessment of existing methods for predicting soil response of laterally loaded piles in sand[J]. Computers and Geotechnics, 2005, 32(4): 274-289. doi: 10.1016/j.compgeo.2005.02.004
[28] KIM Y, JEONG S, LEE S. Wedge failure analysis of soil resistance on laterally loaded piles in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(7): 678-694. doi: 10.1061/(ASCE)GT.1943-5606.0000481
[29] SUN C G, CHO C S, SON M, et al. Correlations between shear wave velocity and in-situ penetration test results for Korean soil deposits[J]. Pure and Applied Geophysics, 2013, 170(3): 271-281. doi: 10.1007/s00024-012-0516-2
-
期刊类型引用(6)
1. 王立业,周凤玺,牟占霖,万旭升,吴道勇. 超固结饱和盐渍黏土化学–力学耦合模型及其验证. 岩石力学与工程学报. 2024(09): 2301-2313 . 百度学术
2. 张斯妤,闫子壮,陈云敏,李育超. 盐溶液侵蚀下砂-膨润土混合土化学固结行为研究. 地基处理. 2022(03): 181-189 . 百度学术
3. 吴谦,毛雪松,王常明. 结合水对软土次固结特性的影响机制研究. 中国公路学报. 2021(07): 215-225 . 百度学术
4. 胡士骏,陈盼,韦昌富,伊盼盼,王勇. NaCl溶液作用下深海沉积物基本物理力学响应. 岩土工程学报. 2021(S2): 142-145 . 本站查看
5. Yu Zhang,Jie Liu,AnHua Xu,JianKun Liu,ZhaoHui Yang,JianHong Fang. Impact of brine on physical properties of saline soils. Sciences in Cold and Arid Regions. 2021(05): 430-439 . 必应学术
6. 宋朝阳,赵成刚,韦昌富,马田田. 非饱和土平均粒间应力的计算及应用. 岩土力学. 2020(08): 2665-2674 . 百度学术
其他类型引用(8)