• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

截排减压抗浮多井系统简化计算及设计方法

朱东风, 曹洪, 骆冠勇, 潘泓, 罗赤宇

朱东风, 曹洪, 骆冠勇, 潘泓, 罗赤宇. 截排减压抗浮多井系统简化计算及设计方法[J]. 岩土工程学报, 2021, 43(11): 1986-1993. DOI: 10.11779/CJGE202111004
引用本文: 朱东风, 曹洪, 骆冠勇, 潘泓, 罗赤宇. 截排减压抗浮多井系统简化计算及设计方法[J]. 岩土工程学报, 2021, 43(11): 1986-1993. DOI: 10.11779/CJGE202111004
ZHU Dong-feng, CAO Hong, LUO Guan-yong, PAN Hong, LUO Chi-yu. Simplified calculation and design method of multi-well system for anti-uplifting based on intercepting and discharging water[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1986-1993. DOI: 10.11779/CJGE202111004
Citation: ZHU Dong-feng, CAO Hong, LUO Guan-yong, PAN Hong, LUO Chi-yu. Simplified calculation and design method of multi-well system for anti-uplifting based on intercepting and discharging water[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1986-1993. DOI: 10.11779/CJGE202111004

截排减压抗浮多井系统简化计算及设计方法  English Version

基金项目: 

国家自然科学基金面上项目 51978282

广东省自然科学基金项目 2018A030313383

广东省自然科学基金项目 2020A1515010583

详细信息
    作者简介:

    朱东风(1984— ),男,博士后,主要从事渗流及岩土工程方面的研究工作。E-mail:dongfengzhu@163.com

    通讯作者:

    骆冠勇, E-mail:luogy@scut.edu.cn

  • 中图分类号: TU43

Simplified calculation and design method of multi-well system for anti-uplifting based on intercepting and discharging water

  • 摘要: 对于截排减压抗浮系统中的减压井群(多井系统),目前除采用数值法进行渗流分析外,尚无实用的简化计算方法,不利于推广使用。鉴于此,提出了简化计算方法:对于圆形止水帷幕内侧均匀分布的多井系统,假定止水帷幕内侧边界水头为常数,通过共形映射推导得到多井系统的水头分布;对于非圆形止水帷幕,可将其等效为圆形近似求解;采用阻力系数法,在考虑止水帷幕透水和绕渗的基础上,将止水帷幕内外侧渗流场串联起来,求解得到总流量。经算例验证,简化算法与有限元法相比结果差距较小,且仅需提供不多的几何参数,即可求得较精确的结果。在排水减压抗浮设计时,控制板底水头和井周水力坡降是关键,为兼顾安全性和经济性,需对参数n,r,hwrw反复调整以达到最佳效果。
    Abstract: For the multi-well system in the anti-uplifting system based on intercepting and discharging water, there is no practical simplified method except the numerical method for seepage analysis, which is not conducive to its application. In view of this, a simplified method is proposed. The idea is as follows: for the multi-well system with even distribution inside the circular cut-off wall, the hydraulic head on the inside boundary of the cut-off wall is assumed to be constant, and the distribution of the hydraulic head of the multi-well system is deduced through conformal mapping. For the non-circular cut-off wall, it can be equivalent to a circle to obtain an approximate solution.The resistance coefficient method is adopted to connect the inner and outer seepage fields of the cut-off wall in series on the basis of considering the water leakage and by-pass seepage of the cut-off wall, and the total flow can be obtained. After verification, a comparison with the finite element method shows that the difference between the simplified algorithm and the finite element method is smaller, and it only needs to provide a few geometric parameters to get more accurate results. The control of the hydraulic head at the bottom of the floor and the hydraulic slope around the well are the key points in the anti-uplifting design process based on drainage decompression. Moreover, in order to give consideration of both safety and economy, parameters n, r, hw and rw need to be adjusted repeatedly to achieve the best effect.
  • 图  1   止水帷幕内外侧渗流场

    Figure  1.   Seepage fields inside and outside cut-off wall

    图  2   z平面

    Figure  2.   z plane

    图  3   t平面

    Figure  3.   t plane

    图  4   ζ平面

    Figure  4.   ζ plane

    图  5   ω平面

    Figure  5.   ω plane

    图  6   不同井数量nOM1的水头分布

    Figure  6.   Distribution hydraulic head of OM1 with different numbers of wells

    图  7   止水帷幕渗流形态

    Figure  7.   Seepage patterns of cut-off wall

    图  8   水头计算结果比较(OM1OM2

    Figure  8.   Comparison of calculated results of hydraulic head

    图  9   截排减压抗浮设计流程

    Figure  9.   Anti-uplifting design process

    表  1   计算结果比较

    Table  1   Comparison of calculated results

    n模型1模型2
    Q/(m3·d-1)Hd/mHR/m(M1)HR/m(M2)Q/(m3·d-1)Hd/mHR/m(M1)HR/m(M2)
    本文有限元本文有限元本文有限元本文有限元本文有限元本文有限元本文有限元本文有限元
    46065605.35.22.32.92.32.03923685.35.43.03.73.02.7
    87417175.24.91.51.71.51.55035045.15.22.12.12.12.1
    168238025.14.91.01.11.01.1574586551.41.51.41.5
    248508365.14.80.90.90.90.9597611551.21.31.21.3
    3328628515.14.80.80.80.80.860762754.91.11.21.11.2
    下载: 导出CSV
  • [1] 朱东风, 曹洪, 骆冠勇, 等. 截排减压抗浮系统在抗浮事故处理中的应用[J]. 岩土工程学报, 2018, 40(9): 1746-1752. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809026.htm

    ZHU Dong-feng, CAO Hong, LUO Guan-yong, et al. Application of interception and drainage anti-floating system in treatment of uplift accidents[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1746-1752. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809026.htm

    [2] 曹洪, 潘泓, 骆冠勇. 地下结构截排减压抗浮概念及应用[J]. 岩石力学与工程学报, 2016, 35(12): 2542-2548. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612019.htm

    CAO Hong, PAN Hong, LUO Guan-yong. A new anti-floatation method by drainage: concept and application[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2542-2548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612019.htm

    [3] 安徽省水利科学研究所. 多层地基和减压沟井的渗流计算理论[M]. 北京: 水利出版社, 1980.

    Anhui Water Resources Research Institute. Theory of Seepage Flow for Calculating Layered Media and Relief Ditches and Relief Wells[M]. Beijing: Water Resources Press, 1980. (in Chinese)

    [4] 毛昶熙. 渗流计算分析与控制[M]. 2版. 北京: 中国水利水电出版社, 2003.

    MAO Chang-xi. Seepage Computation Analysis & Control[M]. 2nd ed. Beijing: China Water Power Press, 2003. (in Chinese)

    [5]

    U.S. Army Corps of Engineers. Design, Construction, and Maintenance of Relief Wells (Engineer Manual No. 1110-1914)[M]. Washington D.C.: Department of the Army, 1992.

    [6] 吴林高. 工程降水设计施工与基坑渗流理论[M]. 北京: 人民交通出版社, 2003.

    WU Lin-gao. Design and Execution of Dewatering & Theory of Seepage in Deep Excavation[M]. Beijing: China Communications Press, 2003. (in Chinese)

    [7] 曹洪, 朱东风, 范泽, 等. 止水帷幕缝隙渗漏变化过程试验研究[J]. 水利学报, 2019, 50(6): 699-709. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201906005.htm

    CAO Hong, ZHU Dong-feng, FAN Ze, et al. Laboratory study of leakage process for cut-off wall with crack[J]. Journal of Hydraulic Engineering, 2019, 50(6): 699-709. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201906005.htm

    [8] 王仁东. 略去流床板桩厚度对滤流(渗流)计算的影响[J]. 浙江大学学报, 1957(3): 9-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC195703001.htm

    WANG Ren-dong. The influence on seepage calculation without considering sheet pile thickness[J]. Journal of Zhejiang University, 1957(3): 9-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC195703001.htm

    [9] 胡瑶. 考虑基坑防渗结构的井的计算方法研究[D]. 广州: 华南理工大学, 2018.

    HU Yao. Study on Calculation Method of Well Considering Impervious Structure of Foundation Pit[D]. Guangzhou: South China University of Technology, 2018. (in Chinese)

    [10] 钟玉泉. 复变函数论[M]. 3版. 北京: 高等教育出版社, 2004.

    ZHONG Yu-quan. Complex Function Theory[M]. 3rd ed. Beijing: China Higher Education Press, 2004. (in Chinese)

    [11] 朱东风. 地下结构截排减压抗浮法渗控关键问题研究[D]. 广州: 华南理工大学, 2019.

    ZHU Dong-feng. A Study on Seepage Control Issues of Anti-uplift Method for Underground Structures Based on Intercepting and Discharging Water[D]. Guangzhou: South China University of Technology, 2019. (in Chinese)

    [12] 阿拉文, 努麦诺夫. 滤流理论[M]. 王仁东译.北京: 高等教育出版社.1959.

    Аравин , Нуменов . Percolation Theory[M]. WANG Ren-dong trans. Beijing: Higher Education Press.1959. (in Chinese)

    [13]

    ZHU D F, CAO H, PAN H, et al. Laboratory study of retention and clogging performance of no-fines concretes[J]. European Journal of Environmental and Civil Engineering, 2021, 25(8): 1471-1490. doi: 10.1080/19648189.2019.1581664

    [14] 刘杰. 土的渗透破坏及控制研究[M]. 北京: 中国水利水电出版社, 2014.

    LIU Jie. Piping and seepage control of soil[M]. Beijing: China Water Power Press, 2014. (in Chinese)

  • 期刊类型引用(3)

    1. 许莹莹,朱晨,孙枫,潘坤,潘晓东. 海相软土弹性剪切模量及静动力刚度弱化特性. 浙江工业大学学报. 2025(02): 131-137+144 . 百度学术
    2. 肖汉清,赵斌,熊力,陈令,秦朗,刘杰. 往复荷载作用下滨海滩涂软基长期性能劣化机制试验研究. 河南科学. 2024(09): 1325-1333 . 百度学术
    3. 王斌,韩幽铭,周欣,陈成,张先伟,桂蕾. 太湖湖相黏土层剪切模量衰减特性的原位测试研究. 岩土力学. 2021(07): 2031-2040 . 百度学术

    其他类型引用(6)

图(9)  /  表(1)
计量
  • 文章访问数:  252
  • HTML全文浏览量:  38
  • PDF下载量:  100
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-01-03
  • 网络出版日期:  2022-12-01
  • 刊出日期:  2021-10-31

目录

    /

    返回文章
    返回