• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

采用不同中柱的单层地铁地下车站结构抗震性能对比研究

李晟, 庄海洋, 王伟, 董正方

李晟, 庄海洋, 王伟, 董正方. 采用不同中柱的单层地铁地下车站结构抗震性能对比研究[J]. 岩土工程学报, 2021, 43(10): 1905-1914. DOI: 10.11779/CJGE202110017
引用本文: 李晟, 庄海洋, 王伟, 董正方. 采用不同中柱的单层地铁地下车站结构抗震性能对比研究[J]. 岩土工程学报, 2021, 43(10): 1905-1914. DOI: 10.11779/CJGE202110017
LI Sheng, ZHUANG Hai-yang, WANG Wei, DONG Zheng-fang. Seismic performance of single-story subway station structures with different types of intermediate columns[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1905-1914. DOI: 10.11779/CJGE202110017
Citation: LI Sheng, ZHUANG Hai-yang, WANG Wei, DONG Zheng-fang. Seismic performance of single-story subway station structures with different types of intermediate columns[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1905-1914. DOI: 10.11779/CJGE202110017

采用不同中柱的单层地铁地下车站结构抗震性能对比研究  English Version

基金项目: 

国家自然科学基金面上项目 51778290

国家自然科学基金面上项目 51978333

中国地震局地球物理研究所基本科研业务费专项项目 DQJB20R13

详细信息
    作者简介:

    李晟(1997— ),男,硕士,主要从事地铁地下车站结构抗震性能研究。E-mail:listenfight@126.com

    通讯作者:

    庄海洋, E-mail:zhuang7802@163.com

  • 中图分类号: TU431

Seismic performance of single-story subway station structures with different types of intermediate columns

  • 摘要: 针对地铁地下车站结构中柱这一抗震薄弱构件,分别采用方形钢筋混凝土柱、圆形钢筋混凝土柱,以及本文新提出的带快速连接装置的预制钢管混凝土柱,建立了土-地下结构非线性静动力耦合相互作用的三维有限元分析模型,对比分析了采用不同中柱设计对车站主体结构地震反应特性的影响规律。结果表明:与方形中柱相比,等截面惯性矩的圆形中柱在地震中受到的损伤较小,具有更好的抗震性能。采用新提出的带快速连接装置的预制钢管混凝土柱可以有效地保证结构中柱在强地震中不受严重损伤,且具有在震后能快速更换的特点。
    Abstract: In view of the seismic weak component of the single frame type underground subway station structure, using the rectangular reinforced concrete columns, the circular reinforced concrete columns, and the proposed precast concrete-filled steel tube (CFST) columns with quick connection devices, a three-dimensional global time-domain finite element analysis model for the nonlinear statically and dynamically coupled soil-main structure interaction is established. The influence rules of the interlayer displacement angle, seismic damage and dynamic stress response of the main structures of the subway station are compared and analyzed when different types of intermediate columns are adopted. The results show that compared with the rectangular columns, the circular columns with equal moment of inertia suffer less damage in earthquakes, and have better seismic performance. The proposed precast CFST columns with quick connection devices can effectively ensure that the columns in the structures will not be seriously damaged in strong earthquakes. They can be quickly replaced after earthquakes so as to improve the overall seismic performance of the underground subway station structure.
  • 图  1   地铁地下车站结构横截面主要尺寸和配筋图

    Figure  1.   Main dimensions and distributed steels of cross section of underground subway station

    图  2   中柱快速连接装置示意图

    Figure  2.   Schematic diagram of quick connection devices for intermediate column

    图  3   基岩输入地震波加速度时程

    Figure  3.   Time histories of input earthquake waves from bedrock surface

    图  4   土-地下结构动力相互作用体系有限元模型

    Figure  4.   Finite element model for soil-subway station interaction system

    图  5   车站结构的层间位移角随输入加速度峰值的变化

    Figure  5.   Relationship between displacement angle of interlayer and PBA of input motion

    图  6   Kobe波作用下车站结构地震受拉损伤云图(PBA=0.3g

    Figure  6.   Seismic tension damages of underground structures under Kobe waves with PBA=0.3g

    图  7   Kobe波作用下车站结构地震受拉损伤云图(PBA=0.5g

    Figure  7.   Seismic tension damages of underground structures under Kobe waves with PBA=0.5g

    图  8   Kobe波作用下车站结构地震受压损伤云图(PBA=0.5g

    Figure  8.   Seismic compress damages of underground structures under Kobe waves with PBA=0.5g

    图  9   结构关键节点的分布情况

    Figure  9.   Distribution of key nodes in structures

    图  10   Kobe波作用下车站结构关键节点动应力时程曲线(PBA=0.3g

    Figure  10.   Time-history curves of dynamic stress for critical nodes of subway station under Kobe waves with PBA=0.3g

    图  11   Kobe波作用下中柱-纵梁相对偏移情况

    Figure  11.   Relative displacements between intermediate and longitudinal beams under Kobe waves

    表  1   土层的主要物理力学参数

    Table  1   Main physical parameters of soils

    土层信息土层深度/m密度/(kg·m-3)剪切波速/(m·s-1)泊松比黏聚力/kPa内摩擦角/(°)
    人工填土0~1.019001400.332015
    全新世砂土1.0~5.119001400.32140
    全新世砂土5.1~8.319001700.32140
    更新世黏土8.3~11.419001900.403020
    更新世黏土11.4~17.219002400.303020
    更新世砂土17.2~39.220003300.26140
    下载: 导出CSV

    表  2   传统结构和装配式车站结构的层间位移角幅值(1/1000)

    Table  2   Comparison of displacement angle between traditional and fabricated station structures (1/1000)

    输入地震波El-Centro波Kobe波卧龙波
    0.3g0.5g0.3g0.5g0.3g0.5g
    传统方柱结构2.906.863.796.972.512.27
    传统圆柱结构2.854.453.916.332.412.20
    装配式中柱结构3.186.464.246.672.482.45
    下载: 导出CSV
  • [1] 顾泰昌. 国内外装配式建筑发展现状[J]. 工程建设标准化, 2014(8): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-GJBZ201408036.htm

    GU Tai-chang. Development status of prefabricated buildings at home and abroad[J]. Standardization of Engineering Construction, 2014(8): 48-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJBZ201408036.htm

    [2] 庄海洋, 王雪剑, 王瑞, 等. 土-地铁动力相互作用体系侧向变形特征研究[J]. 岩土工程学报, 2017, 39(10): 1761-1769. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710003.htm

    ZHUANG Hai-yang, WANG Xue-jian, WANG Rui, et al. Characteristics of lateral deformation of soil-subway dynamic interaction system[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1761-1769. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710003.htm

    [3]

    HASHASH Y M A, HOOK J J, SCHMIDT B, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4): 247-293. doi: 10.1016/S0886-7798(01)00051-7

    [4] 杜修力, 王刚, 路德春. 日本阪神地震中大开地铁车站地震破坏机理分析[J]. 防灾减灾工程学报, 2016, 36(2): 165-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201602001.htm

    DU Xiu-li, WANG Gang, LU De-chun. Earthquake damage mechanism analysis of Daikai Metro Station by Kobe earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(2): 165-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201602001.htm

    [5] 杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1): 53-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm

    DU Xiu-li, MA Chao, LU De-chun, et al. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads[J]. China Civil Engineering Journal, 2017, 50(1): 53-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm

    [6] 杜修力, 刘洪涛, 路德春, 等. 装配整体式地铁车站侧墙底节点抗震性能研究[J]. 土木工程学报, 2017, 50(4): 38-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704005.htm

    DU Xiu-li, LIU Hong-tao, LU De-chun, et al. Study on seismic performance of sidewall joints in assembled monolithic subway station[J]. China Civil Engineering Journal, 2017, 50(4): 38-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704005.htm

    [7] 刘洪涛. 装配整体式地铁车站节点试验研究及整体抗震性能分析[D]. 北京: 北京工业大学, 2018.

    LIU Hong-tao. Experimental Research on Joints of Assembled Integral Subway Stations and Analysis of Overall Seismic Performance[D]. Beijing: Beijing University of Technology, 2018. (in Chinese)

    [8] 庄海洋, 程绍革, 陈国兴. 阪神地震中大开地铁车站震害机制数值仿真分析[J]. 岩土力学, 2008, 29(1): 245-250. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801048.htm

    ZHUANG Hai-yang, CHEN Shao-ge, CHEN Guo-xing. Numerical simulation and analysis of earthquake damages of Daikai metro station caused by Kobe earthquake[J]. Rock and Soil Mechanics, 2008, 29(1): 245-250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801048.htm

    [9]

    CHEN Z Y, CHEN W, BIAN G Q. Seismic performance upgrading for underground structures by introducing shear panel dampers[J]. Advance in Structure Engineering, 2014, 17(9): 1343-1357.

    [10]

    MA C, LU D C, DU X L. Seismic performance upgrading for underground structures by introducing sliding isolation bearings[J]. Tunnelling and Underground Space Technology, 2018, 74: 1-9.

    [11]

    DING P, TAO L J, YANG X R, et al. Three-dimensional dynamic response analysis of a single-ring structure in a prefabricated subway station[J]. Sustainable Cities and Society, 2019, 44: 271-286.

    [12]

    LIU H T, YAN Q S, DU X L. Seismic performance comparison between precast beam joints and cast-in-place beam joints[J]. Advances in Structural Engineering, 2017, 20(9): 1299-1314.

    [13] 庄海洋, 陈国兴, 朱定华. 土体动力黏塑性记忆型嵌套面本构模型及其验证[J]. 岩土工程学报, 2006, 28(10): 1267-1272. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200610016.htm

    ZHUANG Hai-yang, CHEN Guo-xing, ZHU Ding-hua. The dynamic visco-plastic memorial nested yield surface model of soil and its verfication[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1267-1272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200610016.htm

    [14] 庄海洋, 陈国兴. 对土体动力黏塑性记忆型嵌套面模型的改进[J]. 岩土力学, 2009, 30(1): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901028.htm

    ZHUANG Hai-yang, CHEN Guo-xing. Improvement of dynamic viscoplastic memorial nested yield surface model of soil[J]. Rock and Soil Mechanics, 2009, 30(1): 118-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901028.htm

    [15]

    LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900.

    [16]

    LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.

    [17]

    ZHUANG H Y, HU Z H, WANG X J, et al. Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling[J]. Bulletin of Earthquake Engineering, 2015, 13(12): 3645-3668.

    [18]

    ZHUANG H Y, REN J W, MIAO Y, et al. Seismic performance levels of a large underground subway station in different soil foundations[J]. Journal of Earthquake Engineering, 2019, 7: 1-26.

    [19]

    Code of Practice for Temporary Works Procedures and the Permissible Stress Design of Falsework: BS 5975-2008+A1-2011[S]. 2011.

    [20] 防波堤与护岸设计规范:JTS 154—2018[S]. 2018.

    Code of Design for Breakwaters and Revetments: JTS 154—2018[S]. 2018. (in Chinese)

    [21] 徐有邻, 沈文都. 钢筋砼黏结锚固性能的试验研究[J]. 建筑结构学报, 1994, 15(3): 26-37.

    XU You-lin, SHEN Wen-du. An experimental study of bond-anchorage properties of bars in concrete[J]. Journal of Building Structures, 1994, 15(3): 26-37. (in Chinese)

    [22] 闻邦椿. 现代机械设计实用手册[M]. 北京: 机械工业出版社, 2015: 14-15.

    WEN Bang-chun. Modern Mechanical Design Practical Guide[M]. Beijing: China Machine Press, 2015: 14-15. (in Chinese)

    [23] 楼梦麟, 王文剑, 朱彤. 土-结构体系振动台模型试验中土层边界影响问题[J]. 地震工程与工程振动, 2000, 20(2): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200004004.htm

    LOU Meng-lin, WANG Wen-jian, ZHU Tong. Soil lateral boundary effect in shaking table model test of soil-structure system[J]. Earthquake Engineering and Engineering Dynamics, 2000, 20(2): 30-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200004004.htm

    [24]

    IIDA H, HIROTO T, YOSHIDA N, et al. Damage to Daikai subway station[J]. Special Issue of Soils and Foundations, 1996, 36: 283-300.

图(11)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-19
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回