• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

废旧轮胎橡胶颗粒-砂混合料抗剪强度与破坏模式试验研究

刘启菲, 庄海洋, 陈佳, 吴琪, 陈国兴

刘启菲, 庄海洋, 陈佳, 吴琪, 陈国兴. 废旧轮胎橡胶颗粒-砂混合料抗剪强度与破坏模式试验研究[J]. 岩土工程学报, 2021, 43(10): 1887-1895. DOI: 10.11779/CJGE202110015
引用本文: 刘启菲, 庄海洋, 陈佳, 吴琪, 陈国兴. 废旧轮胎橡胶颗粒-砂混合料抗剪强度与破坏模式试验研究[J]. 岩土工程学报, 2021, 43(10): 1887-1895. DOI: 10.11779/CJGE202110015
LIU Qi-fei, ZHUANG Hai-yang, CHEN Jia, WU Qi, CHEN Guo-xing. Tests on shear strength and failure mode of rubber particle-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1887-1895. DOI: 10.11779/CJGE202110015
Citation: LIU Qi-fei, ZHUANG Hai-yang, CHEN Jia, WU Qi, CHEN Guo-xing. Tests on shear strength and failure mode of rubber particle-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1887-1895. DOI: 10.11779/CJGE202110015

废旧轮胎橡胶颗粒-砂混合料抗剪强度与破坏模式试验研究  English Version

基金项目: 

江苏省重点研究计划(社会发展)项目 BE2020711

国家自然科学基金面上项目 51978333

详细信息
    作者简介:

    刘启菲(1995— ),女,博士研究生,主要从事土力学与岩土地震工程研究。E-mail:liuqifei9573@163.com

    通讯作者:

    庄海洋, E-mail:zhuang7802@163.com

  • 中图分类号: TU354;TU317.1

Tests on shear strength and failure mode of rubber particle-sand mixtures

  • 摘要: 由废旧轮胎回收橡胶颗粒与砂混合而成的橡胶-砂混合料具有密度低、变形能力强、阻尼高等诸多优点,将其应用于土木工程,是实现土木工程绿色可持续发展的重要途径之一。通过对橡胶-砂混合料进行固结不排水剪切试验,探讨了橡胶颗粒含量XC、粒径比d50, r/d50, s、相对密实度Dr、固结围压σm等因素对混合料抗剪性能的影响规律及其机理。研究结果表明:随XC的增加,混合料的破坏模式表现出由部分软化-剪胀向完全硬化-剪缩转变。总体来说,随橡胶颗粒的掺入量增加,混合土体(σ1σ3)f和内摩擦角均出现较明显下降,有效内摩擦角则会出现一定程度的提高,且橡胶粒径与砂越接近影响越明显,而Dr的增加可以显著改善混合料的抗剪强度特性。基于土骨架微观结构,初步解释了试验现象及其规律。
    Abstract: The recycled waste tire rubber particles mixed with sand have the advantages of low density, strong distortion-resistant capacity and high damping. The mixtures are becoming a kind of new geotechnical material, which realizes the sustainable development of civil engineering. In this study, the influence law and mechanism of the rubber content XC, particle size ratio of rubber and sand d50, r/d50, s, relative density Dr and confining pressure σ'm on the shear resistance of mixtures are evaluated by a series of consolidated undrained tests. The results show that the failure mode shows a transformation from partial softening-dilatancy to complete hardening-contraction with the increase of XC. In general, the increase of XC will lead to a significant decrease of (σ1-σ3)f and the internal friction angle, and an improvement of the effective internal friction angle to a certain extent. The closer the rubber particle size is to the sand, the more obvious the influence is. In addition, the increase of Dr can significantly improve the shear strength characteristics of the mixtures. Based on the micro-soil skeleton structure, the experimental phenomenon and its laws are preliminarily explained.
  • 图  1   GDS动三轴仪

    Figure  1.   GDS dynamic triaxial test apparatus

    图  2   级配曲线

    Figure  2.   Grading curves

    图  3   不同橡胶含量试样破坏状态(Dr = 50%)

    Figure  3.   Failure modes of rubber-sand mixtures under different conditions (Dr = 50%)

    图  4   不同相对密实度下粗砂-橡胶颗粒混合料试样破坏状态(XC = 10%,σm = 100 kPa)

    Figure  4.   Failure modes of rubber-coarse sand mixtures under different Dr (XC = 10%,σm = 100 kPa)

    图  5   不同工况下橡胶-砂混合料应力-应变曲线

    Figure  5.   Stress-strain curves of rubber-sand mixtures under different conditions

    图  6   橡胶-砂混合料的典型孔压比曲线

    Figure  6.   Typical Ru - ɛ curves of rubber-sand mixtures

    图  7   破坏偏差应力的取值

    Figure  7.   Values of failure deviation stress

    图  8   橡胶-砂混合料破坏偏差应力(Dr = 50%)

    Figure  8.   Values of(σ1σ3)f of rubber-sand mixtures (Dr = 50%)

    图  9   不同相对密实度橡胶-砂混合料破坏偏差应力

    Figure  9.   Values of(σ1σ3)f of rubber-sand mixtures under different Dr

    图  10   不同橡胶含量粗砂-橡胶颗粒混合料莫尔应力圆

    Figure  10.   Mohr's stress circles of rubber -coarse sand mixtures with different XC

    图  11   不同相对密实度粗砂-橡胶颗粒混合料莫尔应力圆

    Figure  11.   Mohr's stress circles of rubber-coarse sand mixtures with different Dr

    图  12   不同橡胶含量橡胶-砂混合料的内摩擦角

    Figure  12.   Internal friction angles of rubber-sand mixtures with different XC

    图  13   不同相对密实度下混合料的内摩擦角

    Figure  13.   Internal friction angle of rubber-sand mixtures with different Dr

    表  1   橡胶-砂混合料基本物理特性指标

    Table  1   Basic physical property indexes of rubber-sand mixtures

    土样颗粒粒径范围/mm相对质量密度Gs最大干密度ρmax/(g·cm-3)最小干密度ρmin/(g·cm-3)不均匀系数Cu
    粗砂0.5~22.651.8241.4891.855
    中砂0.25~0.52.661.6621.3211.129
    细砂0.075~0.252.671.6231.3731.546
    橡胶颗粒2~31.88   
    下载: 导出CSV

    表  2   不排水剪切试验方案

    Table  2   Undrained shear test conditions

    橡胶含量XC/%粒径比d50, r/d50, s相对密实度Dr/%固结围压σm/kPa
    02.6, 8.6, 13.15050, 100, 200, 300
    102.6, 8.6, 13.15050, 100, 200, 300
    202.6, 8.6, 13.15050, 100, 200
    302.6, 8.6, 13.15050, 100, 200
    402.6, 8.6, 13.15050, 100, 200
    502.6, 8.6, 13.15050, 100, 200
    10, 302.6, 13.170, 9050, 100, 200, 300
    注:d50, r,d50, s分别表示橡胶与砂的平均粒径;橡胶含量XC指橡胶颗粒占土样总质量的百分比。
    下载: 导出CSV

    表  3   橡胶-砂混合料抗剪强度

    Table  3   Shears strength of rubber-sand mixed soil

    橡胶含量XC/%相对密实度Dr/%黏聚力c/kPa
    粗砂混合料细砂混合料
    105000
    7050250
    9076350
    305000
    7036125
    9045180
    下载: 导出CSV
  • [1]

    EDIL T B, BOSSCHER P J. Engineering properties of tire chips and soil mixtures[J]. Geotechnical Testing Journal, 1994, 17(4): 453-464. doi: 10.1520/GTJ10306J

    [2]

    MASAD E, TAHA R, HO C, et al. Engineering properties of tire/soil mixtures as a lightweight fill material[J]. Geotechnical Testing Journal, 1996, 19(3): 297-304. doi: 10.1520/GTJ10355J

    [3]

    CALABRESE A, LOSANNO D, SPIZZUOCO M, et al. Recycled Rubber Fiber Reinforced Bearings (RR-FRBs) as base isolators for residential buildings in developing countries: the demonstration building of Pasir Badak, Indonesia[J]. Engineering Structures, 2019, 192(1): 126-144.

    [4]

    RAO S M, JOSHUA R E, REKAPALLI M. Batch-scale remediation of toluene contaminated groundwater using PRB system with tyre crumb rubber and sand mixture[J]. Journal of Water Process Engineering, 2020, 35, 101198. doi: 10.1016/j.jwpe.2020.101198

    [5]

    LEE J H, SALGADO R, BERNAL A, et al. Shredded tires and rubber-sand as lightweight backfill[J]. Journal of Geotechnical and Geo-environmental Engineering, 1999, 125(2): 132-141. doi: 10.1061/(ASCE)1090-0241(1999)125:2(132)

    [6]

    ZORNBERG J G, CABRAL A R, VIRATJANDR C. Behaviour of tire shred-sand mixtures[J]. Canadian Geotechnical Journal, 2004, 41(2): 227-241. doi: 10.1139/t03-086

    [7]

    RAO G V, DUTTA R K. Compressibility and strength behaviour of sand-tyre chip mixtures[J]. Geotechnical & Geological Engineering, 2006, 24(3): 711-724.

    [8]

    LEE J S, DODDS J, CARLOS SANTAMARINA J. Behavior of rigid-soft particle mixtures[J]. Journal of Materials in Civil Engineering, 2007, 19(2): 179-184. doi: 10.1061/(ASCE)0899-1561(2007)19:2(179)

    [9].

    ANVARI S M, SHOOSHPASHA I, KUTANAEI S S. Effect of granulated rubber on shear strength of fine-grained sand[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(5): 936-944. doi: 10.1016/j.jrmge.2017.03.008

    [10]

    NEAZ SHEIKH M, MASHIRI M S, VINOD J S, et al. Shear and compressibility behavior of sand-tire crumb mixtures[J]. Journal of Materials in Civil Engineering, 2013, 25(10): 1366-1374. doi: 10.1061/(ASCE)MT.1943-5533.0000696

    [11] 刘方成, 吴孟桃, 王海东. 粒径比和配比对橡胶砂力学性能的影响研究[J]. 工程地质学报, 2019, 27(2): 376-389. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902019.htm

    LIU Fang-cheng, WU Meng-tao, WANG Hai-dong. Effect of particle size ratio and mix ratio on mechanical behavior of rubber-sand mixtures[J]. Journal of Engineering Geology, 2019, 27(2): 376-389. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902019.htm

    [12] 刘方成, 张永富, 任东滨. 橡胶砂应力-应变特性三轴-单剪联合试验研究[J]. 岩土力学, 2016, 37(10): 2769-2779. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610005.htm

    LIU Fang-cheng, ZHANG Yong-fu, RENG Dong-bin. Stress-strain characteristics of rubber-sand mixtures in united triaxial shear and simple shear tests[J]. Rock and Soil Mechanics. 2016, 37(10): 2769-2779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610005.htm

    [13] 李丽华, 肖衡林, 唐辉明, 等. 轮胎碎片-砂混合土抗剪性能优化试验研究[J]. 岩土力学, 2013, 34(4): 1063-1067. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304025.htm

    LI Li-hua, XIAO Heng-lin, TANG hui-ming, et al. Shear performance optimizing of tire shred-sand mixture[J]. Rock and Soil Mechanics. 2013, 34(4): 1063-1067. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304025.htm

    [14] 邓安, 冯金荣. 砂-轮胎橡胶颗粒轻质土工填料试验研究[J]. 建筑材料学报, 2010, 13(1): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201001025.htm

    DENG An, FENG Jin-rong. Experimental study on sand-shredded tire lightweight fills[J]. Journal of Building Materials, 2010, 13(1): 116-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201001025.htm

    [15] 张涛, 蔡国军, 刘松玉, 等. 橡胶-砂颗粒混合物强度特性及微观机制试验研究[J]. 岩土工程学报, 2017, 39(6): 1082-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706017.htm

    ZHANG Tao, CAI Guo-jun, LIU Song-yu, et al. Experimental study on strength characteristics and micromechanism of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1082-1088. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706017.htm

    [16]

    ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351-451.

    [17] 李广信, 张丙印, 于玉贞. 土力学[M]. 2版. 北京: 清华大学出版社, 2013.

    LI Guang-xin, ZHANG Bing-yin, YU Yu-zhen. Soil Mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2013. (in Chinese)

    [18] 土工试验方法标准:GB/T 50123—2019[S]. 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)

  • 期刊类型引用(2)

    1. 占鑫杰,吕冲,桂书润,李振亚. 化学调质及固结作用下市政污泥水分转化规律. 科学技术与工程. 2025(05): 2057-2065 . 百度学术
    2. 张玉伟,宋战平,谢永利. 孔隙变化条件下黄土土水特征曲线预测模型. 岩土工程学报. 2022(11): 2017-2025 . 本站查看

    其他类型引用(4)

图(13)  /  表(3)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  34
  • PDF下载量:  146
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-12-23
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回