• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑主应力轴偏转影响的远场拱壳围岩压力拱效应表征

赵雁海, 俞缙, 周晨华, 赵凯, 肖怀广

赵雁海, 俞缙, 周晨华, 赵凯, 肖怀广. 考虑主应力轴偏转影响的远场拱壳围岩压力拱效应表征[J]. 岩土工程学报, 2021, 43(10): 1842-1850. DOI: 10.11779/CJGE202110010
引用本文: 赵雁海, 俞缙, 周晨华, 赵凯, 肖怀广. 考虑主应力轴偏转影响的远场拱壳围岩压力拱效应表征[J]. 岩土工程学报, 2021, 43(10): 1842-1850. DOI: 10.11779/CJGE202110010
ZHAO Yan-hai, YU Jin, ZHOU Chen-hua, ZHAO Kai, XIAO Huai-guang. Characterization of pressure arching effect of arch shell surrounding rock considering deviation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1842-1850. DOI: 10.11779/CJGE202110010
Citation: ZHAO Yan-hai, YU Jin, ZHOU Chen-hua, ZHAO Kai, XIAO Huai-guang. Characterization of pressure arching effect of arch shell surrounding rock considering deviation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1842-1850. DOI: 10.11779/CJGE202110010

考虑主应力轴偏转影响的远场拱壳围岩压力拱效应表征  English Version

基金项目: 

国家自然科学基金项目 51474188

国家自然科学基金项目 51774112

国家自然科学基金项目 51874144

东北电力大学博士科研启动基金项目 BSJXM-2019108

详细信息
    作者简介:

    赵雁海(1989— ),男,博士,讲师,主要从事地下工程岩体稳定性分析及控制等方面的教学和科研。E-mail:qingtingnba@163.com

    通讯作者:

    俞缙, E-mail:bugyu0717@163.com

  • 中图分类号: TU432

Characterization of pressure arching effect of arch shell surrounding rock considering deviation of principal stress axis

  • 摘要: 拱效应是开挖区周围岩土体压力迁移及重分布的综合表现,广泛存在于矿山地下工程自承载区围岩。针对采场覆岩断裂拱外部存在远场拱壳结构的实际特点,基于Terzaghi土拱效应原理解析开采卸荷作用下岩层主应力矢量偏转响应特征,通过讨论主应力轴偏转影响下采场覆岩竖向压力主动释放状态及垂直应力分布特征,分析远场围岩压力拱关键部位压应力成拱指标。利用FLAC3D数值软件对采场覆岩主应力矢量偏转成拱规律进行模拟计算,结果表明:远场围岩主应力偏转角由初始最大主应力、侧压系数和采动后剪应力增量及主应力差变化率控制,同一层位覆岩主应力偏转角沿采空区跨中向边界呈递减分布,悬露岩层垂直应力随主应力偏转角增大而降低,压力拱拱顶主应力偏转角、主动压力系数及成拱指标峰值大于拱脚区域,拱脚及拱腰部位升高的垂直应力表现为支承压力。根据解析得出的岩层竖向压力释放力学判据和压应力成拱指标,表征了主应力轴偏转影响下远场围岩加卸载状态和拱效应演化特征。
    Abstract: The arching effect is the comprehensive performance of pressure transferr and redistribution of rock and soil mass around the excavated area, which widely exists in the self-bearing surrounding rock of underground mining projects. Aiming at the actual characteristics of the far-field arch shell structure outside the fractured arch of overlying strata in the mining area, the deviation response characteristics of the principal stress vector of the rock strata under the action of mining unloading are analyzed based on the principle of Terzaghi's soil arching effect, and by discussing the active released state of vertical pressure and the vertical stress distribution characteristics of overlying strata under the influence of deviation of the principal stress axis, the arching index of compressive stress of key part of the pressure arch in far-field surrounding rock is proposed. The numerical software FLAC3D is used to simulate and calculate the arching law of deviated principle stress of overlying strata in the mining area, and the results show that the deviation angle of the principal stress in the far-field surrounding rock is controlled by the initial major principal stress, lateral pressure coefficient, shear stress increment and changing rate of principal stress difference after mining; the deviation angle of the principal stress of rock strata decreases from the midspan to both sides of the goaf boundary at the same horizontal position; the vertical stress of the exposed rock strata decreases with the increasing deviation angle of the principal stress; the deviation angle of the principal stress, active pressure coefficient and peak value of arching index at the arch top are greater than those in the arch foot region; and the rising vertical stress in the arch foot and arch waist behaves as the bearing pressure. According to the derived mechanical criterion for releasing state of the vertical pressure in rock strata and the arching index of compressive stress, the loading and unloading states of the far-field surrounding rock and the evolution characteristics of pressure arching effect under the influence of deviation of the principal stress axis are characterized.
  • 图  1   采场覆岩断裂拱及外部拱壳结构

    Figure  1.   Fractured arch and arch shell structure of overlying strata in mining area

    图  2   采场覆岩主应力轴偏转特征

    Figure  2.   Deviation characteristics of principal stress axis of overlying strata in mining area

    图  3   不同偏转角对应的岩层竖向剪应力分布特征

    Figure  3.   Distribution characteristics of vertical shear stress of rock strata corresponding to different deviation angles

    图  4   不同偏转角对应的岩层垂直应力集中系数分布特征

    Figure  4.   Distribution characteristics of vertical stress concentration factor of rock strata corresponding to different deviation angles

    图  5   采动岩层垂直应力重分布特征

    Figure  5.   Redistribution of vertical stress of mining strata

    图  6   采动覆岩偏转主应力迹线成拱特征

    Figure  6.   Arching characteristics of deviated principal stress trace of overlying strata caused by mining

    图  7   采场覆岩主应力矢量分布特征

    Figure  7.   Distribution characteristics of principal stress vector of overlying strata

    图  8   主应力轴偏转影响下应力值变化特征

    Figure  8.   Characteristics of changing stress under influence of deviation of principal stress axis

    图  9   采场覆岩主应力及剪应力表征指标变化特征

    Figure  9.   Variation characteristics of characterization index for principal stress and shear stress of overlying strata in mining area

    图  10   采场覆岩竖向压力释放及集中特征

    Figure  10.   Release and concentration characteristics of vertical pressure of overlying strata in mining area

    图  11   采动区远场围岩的压力拱效应分布特征

    Figure  11.   Distribution characteristics of pressure arching effect of surrounding rock in mining area

    表  1   煤岩层材料力学参数

    Table  1   Material and mechanical parameters of coal and rock strata

    岩性重度/(kN·m-3)弹性模量/GPa泊松比黏聚力/MPa抗拉强度/MPa内摩擦角/(°)
    砂岩25.0036.500.222.601.5030
    13.1012.700.291.200.6027
    粉砂岩24.6037.900.204.50340
    下载: 导出CSV
  • [1] 宋振骐, 郝建, 石永奎, 等. "实用矿山压力控制理论"的内涵及发展综述[J]. 山东科技大学学报(自然科学版), 2019, 38(1): 5-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201901001.htm

    SONG Zhen-qi, HAO Jian, SHI Yong-kui, et al. Summary of connotation and development of “practical mine pressure control theory”[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2019, 38(1): 5-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201901001.htm

    [2] 文志杰, 景所林, 宋振骐, 等. 采场空间结构模型及相关动力灾害控制研究[J]. 煤炭科学技术, 2019, 47(1): 57-66. doi: 10.13199/j.cnki.cst.2019.01.007

    WEN Zhi-jie, JING Suo-lin, SONG Zhen-qi, et al. Research on stope spatial structure model and related dynamic disaster control[J]. Coal Science and Technology, 2019, 47(1): 57-66. (in Chinese) doi: 10.13199/j.cnki.cst.2019.01.007

    [3] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010.

    QIAN Ming-gao, SHI Ping-wu, XU Jia-lin. Mine Pressure and Rock Formation Control[M]. Xuzhou: China University of Mining and Technology Press, 2010. (in Chinese)

    [4] 杜晓丽, 宋宏伟, 陈杰. 煤矿采矿围岩压力拱的演化特征数值模拟研究[J]. 中国矿业大学学报, 2011, 46(6): 863-867. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201106005.htm

    DU Xiao-li, SONG Hong-wei, CHEN Jie. Numerical simulation study on evolution characteristics of pressure arch of surrounding rock in coal mining[J]. Journal of China University of Mining and Technology, 2011, 46(6): 863-867. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201106005.htm

    [5] 宋宏伟, 杜晓丽. 岩土空洞周围的压力拱及其特性[M]. 北京: 煤炭工业出版社, 2012.

    SONG Hong-wei, DU Xiao-li. Pressure Arch Around Rock and Soil Cavity and Its Characteristics[M]. Beijing: Coal Industry Press, 2012. (in Chinese)

    [6] 谢广祥. 综放工作面及其围岩宏观应力壳力学特征[J]. 煤炭学报, 2005, 30(3): 309-313. doi: 10.3321/j.issn:0253-9993.2005.03.009

    XIE Guang-xiang. Mechanical characteristics of the macroscopic stress shell of fully mechanized caving face and its surrounding rock[J]. Journal of China Coal Society, 2005, 30(3): 309-313. (in Chinese) doi: 10.3321/j.issn:0253-9993.2005.03.009

    [7] 史红, 姜福兴. 充分采动阶段覆岩多层空间结构支承压力研究[J]. 煤炭学报, 2009, 34(5): 605-609. doi: 10.3321/j.issn:0253-9993.2009.05.006

    SHI Hong, JIANG Fu-xing. Research on supporting pressure of overlying strata multilayer spatial structure in full mining stage[J]. Journal of China Coal Society, 2009, 34(5): 605-609. (in Chinese) doi: 10.3321/j.issn:0253-9993.2009.05.006

    [8] 杨振国, 李铁. 高位关键层对压力拱演化规律影响的研究[J]. 煤矿安全, 2015, 46(4): 40-43. doi: 10.3969/j.issn.1008-4495.2015.04.011

    YANG Zhen-guo, LI Tie. Research on the influence of high key layer on the evolution law of pressure arch[J]. Safety in Coal Mines, 2015, 46(4): 40-43. (in Chinese) doi: 10.3969/j.issn.1008-4495.2015.04.011

    [9]

    HUANG Z P, BROCH E, LU M. Cavern roof stability mechanism of arching and stabilization by rockbolting[J]. Tunnelling and Underground Space Technology, 2002, 17(3): 249-261. doi: 10.1016/S0886-7798(02)00010-X

    [10] 梁晓丹, 刘刚, 赵坚. 地下工程压力拱拱体的确定与成拱分析[J]. 河海大学学报(自然科学版), 2005, 33(3): 314-317. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200503018.htm

    LIANG Xiao-dan, LIU Gang, ZHAO Jian. Determination of pressure arch in underground engineering and analysis of arch formation[J]. Journal of Hohai University (Natural Science Edition), 2005, 33(3): 314-317. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200503018.htm

    [11]

    WANG Y C, JING H W, ZHANG Q, LUO N, YIN X. Prediction of collapse scope of deep-buried tunnels using pressure arch theory[J]. Mathematical Problems in Engineering, 2016(4): 1-10.

    [12] 陈若曦, 朱斌, 陈云敏, 等. 基于主应力轴旋转理论的修正Terzaghi松动土压力[J]. 岩土力学, 2010, 31(5): 1402-1406. doi: 10.3969/j.issn.1000-7598.2010.05.009

    CHEN Ruo-xi, ZHU Bin, CHEN Yun-min, et al. Modified Terzaghi loosening earth pressure based on principal stress axis rotation theory[J]. Rock and Soil Mechanics, 2010, 31(5): 1402-1406. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.05.009

    [13] 黎春林. 盾构隧道施工松动土压力计算方法研究[J]. 岩土工程学报, 2014, 36(9): 1714-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409024.htm

    LI Chun-lin. Method for calculating loosening earth pressure during construction of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1714-1720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409024.htm

    [14] 汪丁建, 唐辉明, 李长冬, 等. 考虑主应力偏转的土体浅埋隧道支护压力研究[J]. 岩土工程学报, 2016, 38(5): 804-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605005.htm

    WANG Ding-jian, TANG Hui-ming, LI Chang-dong, et al. Research on support pressure of shallow tunnel in soil considering deflection of principal stress[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 804-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605005.htm

    [15] 赖丰文, 陈福全, 万梁龙. 考虑不完全土拱效应的浅层地基竖向应力计算[J]. 岩土力学, 2018, 39(7): 2546-2554. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807027.htm

    LAI Feng-wen, CHEN Fu-quan, WAN Liang-long. Calculation of vertical stress of shallow foundation considering incomplete soil arching effect[J]. Rock and Soil Mechanics, 2018, 39(7): 2546-2554. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807027.htm

    [16]

    ZHAO Y H, WANG S R, ZOU Y F, et al. Pressure-arching characteristics of fractured strata structure during shallow horizontal coal mining[J]. Tehnicki Vjesnik, 2018, 25(5): 1457-1466.

    [17]

    REZAEI M, HASSANI M F, MAIDI A. Determination of longwall mining-induced stress using the strain energy method[J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2421-2433.

    [18]

    BASARIR H, OGE I F, AYDIN O. Prediction of the stresses around main and tail gates during top coal caving by 3D numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76: 88-97.

    [19]

    XUE D J, WANG J Q, ZHAO Y W, et al. Quantitative determination of mining-induced discontinuous stress drop in coal[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 111: 1-11.

    [20] 任艳芳, 齐庆新. 浅埋煤层长壁开采围岩应力场特征研究[J]. 煤炭学报, 2011, 36(10): 1612-1618. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201110002.htm

    REN Yan-fang, QI Qing-xin. Research on stress field characteristics of surrounding rock in shallow coal seam longwall mining[J]. Journal of China Coal Society, 2011, 36(10): 1612-1618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201110002.htm

    [21] 霍丙杰, 于斌, 张宏伟, 等. 多层坚硬顶板采场覆岩"拱壳"大结构形成机理研究[J]. 煤炭科学技术, 2016, 44(11): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201611004.htm

    HUO Bin-jie, YU Bin, ZHANG Hong-wei, et al. Study on the formation mechanism of the "arch shell" large structure of the overlying strata in the stope with multi-layer hard roof[J]. Coal Science and Technology, 2016, 44(11): 18-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201611004.htm

    [22]

    XIA B W, FU Y H, ZHANG X, et al. Impact analysis of hard roof on the morphological evolution of stress arch[J]. Journal of Engineering Science and Technology Review, 2019, 12(1): 153-162.

    [23] 徐祝贺, 李全生, 李晓斌, 等. 浅埋高强度开采覆岩结构演化及地表损伤研究[J]. 煤炭学报, 2020, 45(8): 2728-2739. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202008004.htm

    XU Zhu-he, LI Quan-sheng, LI Xiao-bin, et al. Structural evolution of overburden and surface damage caused by high-intensity mining with shallow depth[J]. Journal of China Coal Society, 2020, 45(8): 2728-2739. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202008004.htm

    [24] 王家臣, 王兆会, 杨杰, 等. 千米深井超长工作面采动应力旋转特征及应用[J]. 煤炭学报, 2020, 45(3): 876-888. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003003.htm

    WANG Jia-chen, WANG Zhao-hui, YANG Jie, et al. Mining-induced stress rotation and its application in longwall facewith large length in kilometer deep coal mine[J]. Journal of China Coal Society, 2020, 45(3): 876-888. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003003.htm

    [25] 谢和平, 周宏伟, 刘建锋, 等. 不同开采条件下采动力学行为研究[J]. 煤炭学报, 2011, 36(7): 1067-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201107002.htm

    XIE He-ping, ZHOU Hong-wei, LIU Jian-feng, et al. Research on mining dynamics behavior under different mining conditions[J]. Journal of China Coal Society, 2011, 36(7): 1067-1074. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201107002.htm

    [26] 宋振骐, 刘义学, 陈孟伯, 等. 岩梁裂断前后的支承压力显现及其应用的探讨[J]. 山东矿业学院学报, 1984(1): 29-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY198401002.htm

    SONG Zhen-qi, LIU Yi-xue, CHEN Meng-bo, et al. Discussion on the appearance and application of supporting pressure before and after rock beam fracture[J]. Journal of Shandong Institute of Mining and Technology, 1984(1): 29-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY198401002.htm

    [27] 陈国舟, 周国庆. 考虑土拱效应的滑移面间竖向应力研究[J]. 中国矿业大学学报, 2014, 43(3): 374-379. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201403002.htm

    CHEN Guo-zhou, ZHOU Guo-qing. Study on vertical stress between sliding surfaces considering soil arching effect[J]. Journal of China University of Mining and Technology, 2014, 43(3): 374-379. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201403002.htm

    [28] 李建贺, 盛谦, 朱泽奇, 等. Mine-by试验洞开挖过程中围岩应力路径与破坏模式分析[J]. 岩石力学与工程学报, 2017, 36(4): 821-830. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201704006.htm

    LI Jian-he, SHENG Qian, ZHU Ze-qi, et al. Analysis of stress path and failure mode of surrounding rock during mine-by test tunnel excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 821-830. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201704006.htm

    [29] 庞义辉, 王国法, 李冰冰. 深部采场覆岩应力路径效应与失稳过程分析[J]. 岩石力学与工程学报, 2020, 39(4): 682-694. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004003.htm

    PANG Yi-hui, WANG Guo-fa, LI Bing-bing. Stress path effect and instability process analysis of overlying strata in deep stopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 682-694. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004003.htm

图(11)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-24
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回