基于高压注水试验的断层破碎带渗透特性研究

    钱自卫, 黄震, 张蕊, 梁德贤

    钱自卫, 黄震, 张蕊, 梁德贤. 基于高压注水试验的断层破碎带渗透特性研究[J]. 岩土工程学报, 2021, 43(10): 1834-1841. DOI: 10.11779/CJGE202110009
    引用本文: 钱自卫, 黄震, 张蕊, 梁德贤. 基于高压注水试验的断层破碎带渗透特性研究[J]. 岩土工程学报, 2021, 43(10): 1834-1841. DOI: 10.11779/CJGE202110009
    QIAN Zi-wei, HUANG Zhen, ZHANG Rui, LIANG De-xian. Permeability characteristics of fracture zone by high-pressure water injection tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1834-1841. DOI: 10.11779/CJGE202110009
    Citation: QIAN Zi-wei, HUANG Zhen, ZHANG Rui, LIANG De-xian. Permeability characteristics of fracture zone by high-pressure water injection tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1834-1841. DOI: 10.11779/CJGE202110009

    基于高压注水试验的断层破碎带渗透特性研究  English Version

    基金项目: 

    中央高校基本科研业务费专项资金项目 2020ZDPYMS11

    国家重点研发计划项目 2019YFC1805400

    详细信息
      作者简介:

      钱自卫(1986— ),男,博士,副教授,主要从事矿山工程地质与灾害防治等方面的教学和科研。E-mail:ziweiDAV@163.com

    • 中图分类号: TU441

    Permeability characteristics of fracture zone by high-pressure water injection tests

    • 摘要: 采用现场原位高压注水试验研究了巷道底板不同位置断层破碎带的渗透特性。共布置了3个测试孔,进行了5个轮次的注水试验,试验时一孔注水,其它孔水压监测。采用逐级增、降流量的试验路径,过程中连续记录注水流量、注水压力及监测孔水压值。研究发现:①在注水流量增加阶段,断层破碎带注水压力整体呈现“快增→突降→小幅波动”的变化过程,符合典型岩体水力劈裂压力曲线特征;②单孔多次高压注水劈裂压力差异较小,断层带劈裂裂隙具有较强愈合能力,重复注水试验产生新劈裂通道;③断层带注水劈裂压力、劈裂前初始渗透系数整体分别表现为随着测试点与巷道底板距离减小而减小、增加的趋势;④在同等注水流量条件下,流量减小阶段的水力隙宽明显大于流量增加阶段,劈裂后注水会导致了破碎带被冲蚀。把断层破碎带阻水强度与含水层水压的比值定义为断层带防突水安全系数,构建了断层带防突水安全评价方法,提出了断层突水防治措施。
      Abstract: The permeability characteristics in different fracture zones of roadway floor are studied by the high-pressure water injection tests. A total of three boreholes are arranged and five water injection tests are carried out. During the tests, water is injected into one bore hole and the water pressure is monitored in the other bore holes. The step wise increase and decrease of the water injection flow rate is adopted. The flow rates of water injection and the pressures of water injection and monitoring bore holes are recorded. The results show that: (1) At the stage of the increasing water flow rate, the water injection pressure in the fracture zone exhibits the process of "rapid increase, sudden drop and small fluctuation", which conforms to the characteristics of typical hydraulic fracturing pressure curve of rock mass. (2) The difference of fracturing pressure in a single hole is small, the fracture in the fracture zone has strong healing capability, and the repeated water injection tests produce new cracks. (3) The water-injection fracturing pressure and the initial permeability coefficient in the fracture zone decrease and increase with the decrease of the distance between the test point and the roadway floor, respectively. (4) Under the same water injection flow rate, the fracturing width at the stage of the decreasing flow rate is significantly larger than that at the stage of the increasing flow rate, and the water injection after fracturing will cause the fracture zone to be washed gradually. The ratio of water-blocking intensity of the fracture zone to water pressure of the aquifer is defined as the safety factor of water-inrush prevention in the fracture zone, the risk evaluation method for water inrush in the fracture zone is established, and the prevention and control measures for the water inrush in the fracture zone are put forward.
    • 图  1   测试孔布设图

      Figure  1.   Design drawing of test boreholes

      图  2   注水及水压观测设备实物图

      Figure  2.   Water injection and observing equipments for water pressure

      图  3   C2孔第一次注水试验数据

      Figure  3.   Test data of first water injection in borehole C2

      图  4   C1孔注水试验数据

      Figure  4.   Test data of water injection in borehole C1

      图  5   C2孔第二次注水试验数据

      Figure  5.   Test data of second water injection in borehole C2

      图  6   C3孔注水试验数据

      Figure  6.   Test data of water injection in borehole C3

      图  7   C2孔第三次注水试验数据

      Figure  7.   Test data of third water injection in borehole C2

      图  8   高压注水形成的劈裂通道示意图

      Figure  8.   Schematic diagram of fractures caused by water injection

      图  9   初始渗透阶段渗透系数计算结果

      Figure  9.   Permeability coefficients at initial stage

      图  10   破碎带等效水力隙宽

      Figure  10.   Equivalent hydraulic widths of fracture zone

      图  11   C2孔3次增流量试验阶段注水流量与注水压力数据

      Figure  11.   Data of q and p in three increasing flow water injection tests on borehole C2

    • [1] 卜万奎, 茅献彪. 断层倾角对断层活化及底板突水的影响研究[J]. 岩石力学与工程学报, 2009, 28(2): 386-394.

      BU Wan-kui, MAO Xian-biao. Research on effect of fault dip on fault activation and water inrush of coal floor[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(2): 386-394. (in Chinese)

      [2] 宋振骐, 郝建, 汤建泉, 等. 断层突水预测控制理论研究[J]. 煤炭学报, 2013, 38(9): 1511-1515.

      SONG Zhen-qi, HAO Jian, TANG Jian-quan, SHI Yong-kui, et al. Study on water inrush from fault’s prevention and control theory[J]. Journal of China Coal Society, 2013, 38(9): 1511-1515. (in Chinese)

      [3] 胡新宇. 采场底板隐伏断层活化及突水机理研究[D]. 徐州: 中国矿业大学, 2015.

      HU Xin-yu. Study on Mechanism of Fault Activation and Water-Inrush Through Insidious Fault in Mining Floor[D]. Xuzhou: China University of Mining and Technology, 2015. (in Chinese)

      [4] 李晓昭, 罗国煜, 陈忠胜. 地下工程突水的断裂变形活化导水机制[J]. 岩土工程学报, 2002, 24(6): 695-700.

      LI Xiao-zhao, LUO Guo-yu, CHEN Zhong-sheng. The mechanism of deformation and water conduction of fault due to excavation in water inrush in underground engineering[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 695-700. (in Chinese)

      [5]

      WU Q, WANG M, WU X. Investigations of groundwater bursting into coal mine seam floors from fault zones[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(4): 557-571.

      [6] 白海波, 茅献彪, 吴宇, 等. 高压奥灰水大型逆断层下盘煤层安全开采研究[J]. 岩石力学与工程学报, 2009, 28(2): 246-252.

      BAI Hai-bo, MAO Xian-biao, WU Yu, et al. Research on water-reserved mining with high water pressure under large-scale thrust-fault in ordovician karst[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(2): 246-252. (in Chinese)

      [7] 张蕊. 带压开采底板构造裂隙带活化导渗机制[D]. 徐州: 中国矿业大学, 2014.

      ZHANG Rui. Activation Seepage Mechanism on Structural Fracture Zone of Coal Seam Floor in Mining Above Aquifer[D]. Xuzhou: China University of Mining and Technology, 2014. (in Chinese)

      [8] 吴基文, 刘小红. 断层带岩体阻水能力原位测试研究与评价[J]. 岩土力学, 2003, 24(10): 447-450.

      WU Ji-wen, LIU Xiao-hong. In-situ measurement study and evaluation on water-resisting ability of rock mass in fault zone[J]. Rock and Soil Mechanics, 2003, 24(10): 447-450. (in Chinese)

      [9]

      QIAN Z W, HUANG Z, SONG J G. A case study of water inrush incident through fault zone in China and the corresponding treatment measures[J]. Arabian Journal of Geosciences, 2018, 11(14): 1-7.

      [10] 李文平, 刘启蒙, 孙如华. 构造破碎带滞后突水渗流转换理论与试验研究[J]. 煤炭科学技术, 2011, 39(11): 10-13.

      LI Wen-ping, LIU Qi-meng, SUN Ru-hua. Theoretical and experiment study on vadose conversion of water inrush later occurred from structure broken zone later occurred from structure broken zone[J]. Coal Science and Technology, 2011, 39(11): 10-13. (in Chinese)

      [11] 武强, 刘金韬, 钟亚平, 等. 开滦赵各庄矿断裂滞后突水数值仿真模拟[J]. 煤炭学报, 2002, 27(5): 511-516.

      WU Qiang, LIU Jin-tao, ZHONG Ya-ping, et al. The numeric simulations of water-bursting time-effect for faults in Zhaogezhuang Coal Mine, Kailuan, China[J]. Journal of China Coal Society, 2002, 27(5): 511-516. (in Chinese)

      [12] 李海燕, 张红军, 李术才, 等. 断层滞后型突水渗-流转化机制及数值模拟研究[J]. 采矿与安全工程学报, 2017, 34(2): 323-329.

      LI Hai-yan, ZHANG Hong-jun, LI Shu-cai, et al. The seepage-flowing conversion mechanism of the fault lagging water inrush and its numerical simulation[J]. Journal of Mining & Safety Engineering, 2017, 34(2): 323-329. (in Chinese)

      [13] 张庆松, 王德明, 李术才, 等. 断层破碎带隧道突水突泥模型试验系统研制与应用[J]. 岩土工程学报, 2017, 39(3): 417-426.

      ZHANG Qing-song, WANG De-ming, LI Shu-cai, et al. Development and application of model test system for inrush of water and mud of tunnel in fault rupture zone[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 417-426. (in Chinese)

      [14]

      HUANG Z, JIANG Z Q, QIAN Z W, et al. Analytical and experimental study of water seepage propagation behavior in the fault[J]. Acta Geodynamica Et Geomaterialia, 2014, 11(4): 361-370.

      [15]

      LIANG D X, JIANG Z Q, GUAN Y Z. Field research: measuring water pressure resistance in a fault-induced fracture zone[J]. Mine Water and the Environment, 2015, 34(3): 320-328.

      [16]

      HUANG Z, JIANG Z Q, TANG X, et al. In situ measurement of hydraulic properties of the fractured zone of coal mines[J]. Rock Mechanics and Rock Engineering, 2016, 49(2): 603-609.

      [17] 张德强, 孙兴伟, 王敬勇, 等. DG水电站F3缓倾断层原位高压渗透试验分析[J]. 水电与新能源, 2020, 34(11): 12-19.

      ZHANG De-qiang, SUN Xing-wei, WANG Jing-yong, et al.Analysis of the in-situ high pressure permeability test of F3 gently inclined fault in DG hydropower station project[J]. Hydropower and New Energy, 2020, 34(11): 12-19. (in Chinese)

      [18] 张世殊. 溪洛渡水电站坝基岩体钻孔常规压水与高压注水试验成果比较[J]. 岩石力学与工程学报, 2002, 2l(3): 385-387.

      ZHANG Shi-shu. Comparison of results of conventional and high water-pressure tests on the dam foundation rock masses of Xiluodu hydroelectric station[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(3): 385-387. (in Chinese)

      [19] 水利水电工程钻孔注水试验规程:SL31—2003[S]. 2003.

      Specifications for Rock Test in Water Conservancy and Hydroelectric Engineering: SL31—2003[S]. 2003. (in Chinese)

      [20]

      QIAN Zi-wei, JIANG Zhen-quan, GUAN Yun-zhang. Evolution of the hydraulic properties of deep fault zone under high water pressure[J]. Journal of Earth System Science, 2020, 129(4): 1-7.

      [21] 殷黎明, 杨春和, 罗超文, 等. 高压注水试验在深钻孔中的应用[J]. 岩土力学, 2005, 26(10): 1692-1694.

      YIN Li-ming, YANG Chun-he, LUO Chao-wen, et al. Application of high water-pressure test to deep borehole[J]. Rock and Soil Mechanics, 2005, 26(10): 1692-1694. (in Chinese)

      [22] 钱家忠, 赵卫东, 潘国营. 单一流迳基岩裂隙水流态的实验研究[J]. 焦作工学院学报(自然科学版), 2000, 19(3): 192-195.

      QIAN Jia-zhong, ZHAO Wei-dong, PAN Guo-ying. The experimental study of motion type of the flow in a single fracture[J]. Journal of Jiaozuo Institute of Technology (Natural Science), 2000, 19(3): 192-195. (in Chinese)

      [23] 蒋中明, 傅胜, 李尚高, 等. 高压引水隧洞陡倾角断层岩体高压注水试验研究[J]. 岩石力学与工程学报, 2007, 26(11): 2318-2323.

      JIANG Zhong-ming, FU Sheng, LI Shang-gao, et al. High pressure permeability test on hydraulic tunnel with steep obliquity faults under high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(11): 2318-2323. (in Chinese)

      [24] ЛОМИЗЕ M. Фильтрация втрещиноватых породах[M]. MockBa: Госэнергоизат, 1951.

      ЛОМИЗЕ M. Penetration of Broken Rock[M]. Moscow: National Energy, 1951. (in Russian)

      [25] РОММ Е С. Фильтрационные своистьа трещиновтых горных пород[M]. Москва: Издательстьо Недра, 1966.

      РОММ Е С. Permeability Characteristics of Fractured Rock[M]. Moscow: Nedra Press, 1966. (in Russian)

      [26] 速宝玉, 詹美礼, 赵坚. 光滑裂隙水流模型实验及其机理初探[J]. 水利学报, 1994(5): 19-24.

      SU Bao-yu, ZHAN Mei-li, ZHAO Jian. The model test of the flow in smooth fracture and the study of its mechanism[J]. Journal of Hydraulic Engineering, 1994(5): 19-24. (in Chinese)

    • 期刊类型引用(12)

      1. 蒋亚龙,汤新,朱碧堂,孙洋,俞俊平,胡逸凡,卢海峰. 黏性土石混合体力学特性及破裂形态影响因素研究. 东南大学学报(自然科学版). 2025(01): 161-170 . 百度学术
      2. 於昌峰,姜春露,吴云. 基于正向—反向高压注水试验的深部矿井断层阻水性特征研究. 金属矿山. 2025(02): 131-137 . 百度学术
      3. 赵金海,朱伟龙,孙文斌,马海龙,乔洋. 基于钻孔数据的断层带结构数值模型构建及应用探索. 煤炭学报. 2025(03): 1458-1472 . 百度学术
      4. 姜乐乐. 矿井深部巷道断层渗透性测试研究. 能源与环保. 2024(03): 233-238 . 百度学术
      5. 朱术云,王永军,吕文茂,张民,张强. 基于现场压水的同一条断层不同位置阻渗差异性研究. 采矿与安全工程学报. 2024(04): 759-768 . 百度学术
      6. 柳耀琦,刘四新,崔汝卿,祝曾婷. 地下水封洞库水幕孔注水试验渗流场及稳压时间分析. 化工与医药工程. 2024(05): 4-11 . 百度学术
      7. 曹思文,胡东祥,张民,孟凡贞,朱术云. 基于压渗的下组煤巷道揭露某典型断层阻渗性试验研究. 采矿与安全工程学报. 2023(01): 120-127 . 百度学术
      8. 崔世新,史建松. 某尾矿库泄洪隧洞围岩渗漏机理与治理方案. 采矿技术. 2023(02): 19-23 . 百度学术
      9. 桑丛雨,王鹏. 低渗透油藏压驱效果影响因素研究. 北京石油化工学院学报. 2023(01): 27-32 . 百度学术
      10. 严美鑫,朱术云,张民,张振国. 下组煤底板断层采动活化流固耦合数值模拟研究. 矿业安全与环保. 2023(02): 21-27 . 百度学术
      11. 王冰渡,张民,贾儒雅,朱术云. 受断层控制的下组煤开采底板变形特征及突水危险性探究. 煤炭技术. 2023(06): 151-155 . 百度学术
      12. 隋旺华. 矿山采掘岩体渗透变形灾变机理及防控Ⅱ:底板突水. 工程地质学报. 2022(06): 1849-1866 . 百度学术

      其他类型引用(6)

    图(11)
    计量
    • 文章访问数:  303
    • HTML全文浏览量:  31
    • PDF下载量:  163
    • 被引次数: 18
    出版历程
    • 收稿日期:  2021-01-31
    • 网络出版日期:  2022-12-02
    • 刊出日期:  2021-09-30

    目录

      /

      返回文章
      返回