• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

交通荷载下台阶式加筋土挡墙动力响应的试验研究

肖成志, 李海谦, 高珊, 李文君

肖成志, 李海谦, 高珊, 李文君. 交通荷载下台阶式加筋土挡墙动力响应的试验研究[J]. 岩土工程学报, 2021, 43(10): 1789-1797. DOI: 10.11779/CJGE202110004
引用本文: 肖成志, 李海谦, 高珊, 李文君. 交通荷载下台阶式加筋土挡墙动力响应的试验研究[J]. 岩土工程学报, 2021, 43(10): 1789-1797. DOI: 10.11779/CJGE202110004
XIAO Cheng-zhi, LI Hai-qian, GAO Shan, LI Wen-jun. Dynamic response of tiered geogrid-reinforced soil retaining walls under traffic loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1789-1797. DOI: 10.11779/CJGE202110004
Citation: XIAO Cheng-zhi, LI Hai-qian, GAO Shan, LI Wen-jun. Dynamic response of tiered geogrid-reinforced soil retaining walls under traffic loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1789-1797. DOI: 10.11779/CJGE202110004

交通荷载下台阶式加筋土挡墙动力响应的试验研究  English Version

基金项目: 

国家自然科学基金项目 41877255

国家自然科学基金项目 52078182

河北省自然科学基金项目 E2018202108

详细信息
    作者简介:

    肖成志(1976— ),男,教授,博士研究生导师,主要从事土工合成材料及加筋土原理方面的研究工作。E-mail:chengzhixiao@hotmail.com

  • 中图分类号: TU413;U416.1

Dynamic response of tiered geogrid-reinforced soil retaining walls under traffic loading

  • 摘要: 台阶式加筋土挡墙在山区道路边坡支挡结构中应用广泛,针对总高相同的二级台阶式加筋土挡墙开展1∶3大型缩尺模型试验,首先分析交通循环荷载作用下台阶宽度D对加筋土挡墙顶部基础沉降比的影响,进而选取D=0.4H2H2为下级挡墙高度)的台阶式加筋土挡墙,研究交通荷载幅值及频率变化时,挡墙位移、土压力、筋材应变和潜在滑动面的动力响应规律。结果表明:加载初期挡墙顶部沉降和面板水平位移增加明显,但随循环次数增加呈收敛趋势;面板最大水平位移出现在上级墙高约0.85HH为总墙高)处,且分布模式几乎不受幅值及频率变化影响;荷载幅值和频率对上级挡墙筋材应变的影响明显,下级挡墙筋材在上级墙趾下方处应变较大;二级挡墙水平土压力值沿墙高均呈顶部与底部小而中部较大的分布形式;上级挡墙潜在破裂面随荷载幅值增大而下移,由局部破坏逐渐向深层整体破坏演变;填筑过程将使下墙近面板处垂直应力增至约为1.5倍自重。研究结果将为台阶式加筋土挡墙设计与施工提供有益指导。
    Abstract: The multi-tiered geogrid-reinforced retaining wall (GRSRW) has been widely used in road retaining projects in mountainous areas. A 1∶3 large-scaled model test is carried out to investigate the performance of a two-tiered GRSRW with the same total height. The influences of offset distance D on its foundation settlement ratio is analyzed firstly, and then under the specified offset D=0.4H2 (H2, the height of the lower wall), the effects of variation of amplitude and frequency of the traffic loading on the panel horizontal displacement, earth pressure, reinforcement strains, strain distribution and potential failure surface are studied comprehensively. The test results show that the settlement ratio of loading plate at the top of retaining wall and the horizontal displacement ratio of panels increase significantly at the very beginning with the increase of the number of the traffic loading, and the displacement increment gradually tends to be convergent with the further increase of cycle times. The maximum displacement occurs at the upper wall height of about 0.85H (H is the total wall height), and the distribution mode of the horizontal displacement is not affected obviously by the traffic loading. To increase the amplitude and frequency of the traffic loading can remarkably affect the strains of geogrid layers of the upper wall, and the strains of geogrid, below the toe of upper wall, of the lower wall are relatively greater. The horizontal earth pressure of the upper and lower walls is small at the top and bottom of the retaining wall, but large in the middle. The potential failure surface of the upper wall moves downward with the increase of the loading amplitude, and the failure mode of the upper wall gradually changes from local failure to deep global one. The filling process will increase the vertical stress of the lower wall near the panel to about 1.5 times the self-weight. The conclusion can provide a helpful guidance for the design and construction of tiered GRSRWs.
  • 图  1   二级台阶式挡土墙示意图

    Figure  1.   Schematic diagram of reinforced retaining wall

    图  2   台阶式加筋土挡墙模型箱及模型试验示意图

    Figure  2.   Diagram of MGRSRW and model test box

    图  3   试验填料级配曲线

    Figure  3.   Gradation curve of filling soils

    图  4   格栅与面板连接方式

    Figure  4.   Connection mode between geogrid and facing panel

    图  5   台阶式加筋土挡墙监测方案布置图(以D=36 cm为例)

    Figure  5.   Monitoring plan of instrumented GRSRW (e. g., D=36 cm)

    图  6   循环次数与试验时程和基础沉降比的关系曲线

    Figure  6.   Relationship among settlement ratio of strip foundation, cycle times and time history

    图  7   D=0.4H2时荷载大小和频率对挡墙水平位移的影响

    Figure  7.   Effects of magnitude and frequency of cyclic loading on horizontal deformation of GRSRW

    图  8   D=0.4H2时台阶式加筋土挡墙墙背水平土压力

    Figure  8.   Horizontal earth pressures along height of GRSRW

    图  9   D=0.4H2时台阶式加筋土挡墙垂直土压力

    Figure  9.   Vertical earth pressures along the bottom of GRSRW

    图  10   循环荷载对筋材应变的影响

    Figure  10.   Effects of cyclic loading on strains of geogrids

    图  11   D=0.4H2时顶部加载作用下加筋土挡墙潜在破坏模式

    Figure  11.   Potential failure surfaces of GRSRW under different loading modes for D=0.4H2

    图  12   填筑过程对加筋土挡墙基底垂直土压力影响

    Figure  12.   Effects of filling of GRSRW on vertical earth pressure

    图  13   基底垂直土压力实测与理论结果对比图

    Figure  13.   Comparison between measured and theoretical results of vertical earth pressure at bottom of wall

    表  1   加筋土挡墙模型试验方案

    Table  1   Model test schemes of GRSRW

    试验组别荷载范围P/kPa频率f/Hz台阶宽度D/cm终止条件
    10~501.018(0.2H2)1×104次循环
    20~501.036(0.4H2)1×104次循环
    30~501.054(0.6H2)1×104次循环
    40~751.036(0.4H2)1×104次循环
    50~501.536(0.4H2)1×104次循环
    下载: 导出CSV
  • [1]

    KOERNER R M. Design with Geosynthetics[M]. 5th ed. Englewood Cliffs: Prentice-Hall Inc, 2010.

    [2]

    YOO C S, SONG A R. Effect of foundation yielding on performance of two-tier geosynthetic-reinforced segmental retaining walls: a numerical investigation[J]. Geosynthetics International, 2006, 13(5): 181-194. doi: 10.1680/gein.2006.13.5.181

    [3] 铁路路基支挡结构设计规范:TB 10025—2006[S]. 2006.

    Code for Design on Retaining Structures of Railway Subgrade: TB 10025—2006[S]. 2006. (in Chinese)

    [4]

    Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes: Volume I FHWA—NHI—10—024[S]. 2009.

    [5]

    NCMA. Design Manual for Segmental Retaining Walls[S]. 1997.

    [6] 吴连海, 杨广庆, 张青波, 等. 高速铁路加筋土挡墙动响应规律现场试验[J]. 西南交通大学学报, 2017, 52(3): 546-553. doi: 10.3969/j.issn.0258-2724.2017.03.015

    WU Lian-hai, YANG Guang-qing, ZHANG Qing-bo, et al, In-situ test on dynamic responses of reinforced soil retaining walls for high-speed railways[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 546-553. (in Chinese) doi: 10.3969/j.issn.0258-2724.2017.03.015

    [7] 赵云斐, 杨广庆, 周诗广, 等. 高速铁路土工格栅加筋土挡墙服役期力学行为研究[J]. 铁道学报, 2020, 42(6): 129-138. doi: 10.3969/j.issn.1001-8360.2020.06.017

    ZHAO Yun-fei, YANG Guang-qing, ZHOU Shi-guang, et al. Research on mechanical behaviour of high-speed railway geogrid reinforced soil retaining wall[J]. Journal of the China Railway Society, 2020, 42(6): 129-138. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.06.017

    [8]

    XIAO C Z, HAN J, ZHANG Z. Experimental study on performance of geosynthetic-reinforced soil model walls on rigid foundations subjected to static footing loading[J]. Geotextiles and Geomembranes, 2016, 44(1): 81-94. doi: 10.1016/j.geotexmem.2015.06.001

    [9] 陈建峰, 张旭, 柳军修. 软土地基刚/柔性组合墙面加筋土挡墙离散连续耦合数值模拟[J]. 同济大学学报(自然科学版), 2019, 47(2): 159-166. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201902001.htm

    CHEN Jian-feng, ZHANG Xu, LIU Jun-xiu. Coupling discontinuous-continuous simulation of reinforced soil walls with flexible/rigid facings on soft foundation[J]. Journal of Tongji University (Natural Science), 2019, 47(2): 159-166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201902001.htm

    [10] 杨果林, 林宇亮, 李昀. 新型加筋土挡墙动变形特性试验研究[J]. 振动与冲击, 2010, 29(1): 223-248. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201001052.htm

    YANG Guo-lin, LIN Yu-liang, LI Yun, Test study on dynamic deformation behavior of new reinforced earth retaining walls[J]. Journal of Vibration and Shock, 2010, 29(1): 223-248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201001052.htm

    [11] 曹新文, 蔡英. 重复加载下路基填土的临界动应力和永久变形初探[J]. 西南交通大学学报, 1996, 2(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT601.000.htm

    CAO Xin-wen, CAI Ying. Study of the critical dynamic stress and permanent strain of the subgrade-soil under the repeated load[J]. Journal of Southwest Jiaotong University, 1996, 2(1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT601.000.htm

    [12] 杨广庆, 蔡英. 多级台阶式加筋土挡土墙试验研究[J]. 岩土工程学报, 2000, 22(2): 254-257. doi: 10.3321/j.issn:1000-4548.2000.02.024

    YANG Guan-qing, CAI Ying. Study on the multi-steps reinforced earth retaining wall[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 254-257. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.02.024

    [13] 王祥, 徐林荣. 双级土工格栅加筋土挡墙的测试分析[J]. 岩土工程学报, 2003, 25(2): 220-224. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200302023.htm

    WANG Xiang, XU Lin-rong. Test and analysis of two-step retaining wall reinforced by geogrid[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 220-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200302023.htm

    [14] 高速铁路设计规范:TB 10621—2014[S]. 2015.

    Code for Design of High Speed Railway: TB 10621—2014[S]. 2015. (in Chinese)

    [15] 杨广庆. 台阶式加筋土挡墙设计方法的研究[J]. 岩石力学与工程学报, 2004, 23(4): 695-698. https://cdmd.cnki.com.cn/Article/CDMD-10613-1019951499.htm

    YANG Guang-qing. Study on design method of tiered reinforced earth retaining wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 695-698. (in Chinese) https://cdmd.cnki.com.cn/Article/CDMD-10613-1019951499.htm

    [16]

    WRIGHT S G. Design Guidelines for Multi-Tiered MSE Walls[R]. Texas: Texas Department of Transportation, 2005.

图(13)  /  表(1)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  32
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回