Simplified analysis of dynamic response of pile-supported bridge under local scour and verification by centrifugal shaking tests
-
摘要: 冲刷导致桩周土体流失,改变了场地的地震动特性,同时影响了桥梁的抗震性能。为研究局部冲刷下桩基桥梁动力特性及潜在破坏风险,探讨了冲刷场地的地震动特性,给出局部冲刷场地的地震动快速计算方法;并在此基础上提出局部冲刷后桩基桥梁地震分析简化模型,通过振型叠加法计算桥梁的墩底、桩身剪力和最大位移,用以快速评估局部冲刷后桩基桥梁的破坏风险,进而确定临界破坏冲刷深度;为验证模型的正确性,开展了50g重力下桩基桥梁离心振动台试验,桥梁上部结构简化为质量块,基础采用3×3群桩。按照冲刷深度分为3个工况,每个工况下输入白噪声和El-Centro波。研究表明,一般冲刷使得场地周期减小,但局部冲刷对场地周期影响不明显,局部冲刷坑坡角对场地的地震动几乎没有影响;局部冲刷场地与一般冲刷场地的地震动差别较大,但与原场地的地震响应基本相似;桥梁响应最大时的冲刷深度取决于桥梁频率与地震波主要波频的关系。该简化方法计算的桥梁反应与试验结果相近,因此,可用于局部冲刷条件下桥梁的地震反应快速计算、震害风险评估和临界破坏冲刷深度确定。Abstract: Scour causes the erosion of soil, changes the seismic response of site, and also influences the seismic properties of bridge. To investigate the dynamic behavior and damage potential of pile-supported bridges at local scour site, the effects of scour on the ground motion of site are firstly discussed, and a fast calculation method for calculating ground motion is presented. Next, a simplified model describing the bridge response is put forward, which considers the ground motion changes caused by local scour. Then the shear force at the pier bottom and pile head, and the maximum displacement of bridge are calculated by the modal superposition method so as to quickly evaluate the damage potential of bridge after scour and further determine the critical damage scour depth. Finally, the centrifugal shaking tests on the pile-supported bridge are conducted under 50g to verify the accuracy of this model. The superstructure of the bridge supported by 3×3 pile-group foundation is simplified as a mass block. There are 3 scour depth conditions. It is found that the site period obviously decreases under general scour, and hardly changes under local scour. The slope angle of local scour hole has virtually no impact on the ground motions of site. The motions at local scour sites are quite different from those at general scour sites, but similar to those at the original free site at the same depth. The scour depth, where the bridge reaches the greatest response, depends on the interrelation between bridge period and dominant frequency of the earthquake. The centrifuge tests further prove that the proposed model can be applied to the fast calculation of seismic response, the assessment of potential of scoured bridge and the critical scour depth under earthquakes.
-
-
表 1 模型设计相似比例
Table 1 Scale of design model
部件 参数 模型 原型 比例 桩 刚度/(N·m2) 71.9 44937500 1∶504 外径/m 0.014 0.7 1∶50 弹模/GPa 70 — — 承台 质量/kg 0.78 97500 1∶503 上部 质量/kg 2.31 288500 1∶503 结构 周期/s 0.009 0.51 1∶50 表 2 试验工况
Table 2 Testing programs
冲刷深度/m 峰值加速度/g 白噪声 El-Centro波 0 0.05 0.1, 0.2, 0.3 2.5 0.05 0.1, 0.2, 0.3 5.0 0.05 0.1, 0.2, 0.3 -
[1] WANG C, YU X, LIANG F Y. A review of bridge scour: mechanism, estimation, monitoring and countermeasures[J]. Natural Hazards, 2017, 87(3): 1881-1906. doi: 10.1007/s11069-017-2842-2
[2] 曹圣华. 苏通大桥巨型群桩基础冲刷防护研究[D]. 南京: 河海大学, 2006. CAO Sheng-hua. Research of Sutong Bridge Huge Pile Foundation Scour[D]. Nanjing: Hohai University, 2006. (in Chinese)
[3] LIN C, BENNETT C, HAN J, et al. Scour effects on the response of laterally loaded piles considering stress history of sand[J]. Computers and Geotechnics, 2010, 37(7/8): 1008-1014.
[4] FOTI S, SABIA D. Influence of foundation scour on the dynamic response of an existing bridge[J]. Journal of Bridge Engineering, 2011, 16(2): 295-304. doi: 10.1061/(ASCE)BE.1943-5592.0000146
[5] ALIPOUR A, SHAFEI B, SHINOZUKA M. Reliability-based calibration of load factors for design of reinforced concrete bridges under multiple extreme events: scour and earthquake[J]. Journal of Bridge Engineering, 2013, 18(5): 362-371. doi: 10.1061/(ASCE)BE.1943-5592.0000369
[6] WANG S C, LIU K Y, CHEN C H, et al. Experimental investigation on seismic behavior of scoured bridge pier with pile foundation[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(6): 849-864.
[7] 梁发云, 陈海兵, 黄茂松, 等. 结构-群桩基础地震响应离心振动台模型试验[J]. 建筑结构学报, 2016, 37(9): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201609017.htm LIANG Fa-yun, CHEN Hai-bing, HUANG Mao-song, et al. Model test on seismic response of superstructure and pile group[J]. Journal of Building Structures, 2016, 37(9): 134-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201609017.htm
[8] WANG X W, YE A J, SHANG Y, et al. Shake-table investigation of scoured pile-group-supported bridges in liquefiable and nonliquefiable soils[J]. Earthquake Engineering & Structural Dynamics, 2019, 48(11): 1217-1237.
[9] GANESH PRASAD G, BANERJEE S. The impact of flood-induced scour on seismic fragility characteristics of bridges[J]. Journal of Earthquake Engineering, 2013, 17(6): 803-828. doi: 10.1080/13632469.2013.771593
[10] WANG Z, DUEÑAS-OSORIO L, PADGETT J E. Influence of scour effects on the seismic response of reinforced concrete bridges[J]. Engineering Structures, 2014, 76: 202-214. doi: 10.1016/j.engstruct.2014.06.026
[11] KLINGA J V, ALIPOUR A. Assessment of structural integrity of bridges under extreme scour conditions[J]. Engineering Structures, 2015, 82: 55-71. doi: 10.1016/j.engstruct.2014.07.021
[12] 叶爱君, 刘伟岸, 王斌斌. 高桩承台基础与桥梁结构的动力相互作用[J]. 同济大学学报(自然科学版), 2007, 35(9): 1163-1168. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200709002.htm YE Ai-jun, LIU Wei-an, WANG Bin-bin. Dynamic interaction between high-rise pile cap foundation and bridge structure[J]. Journal of Tongji University (Natural Science), 2007, 35(9): 1163-1168. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200709002.htm
[13] XU Y, SHANG Y, YE A. Dynamic interaction between bridge pier and its large pile foundation considering earthquake and scour depths[J]. Advances in Structural Engineering, 2016, 19(9): 1390-1402. doi: 10.1177/1369433216642077
[14] SONG S T, WANG C Y, HUANG W H. Earthquake damage potential and critical scour depth of bridges exposed to flood and seismic hazards under lateral seismic loads[J]. Earthquake Engineering and Engineering Vibration, 2015, 14(4): 579-594. doi: 10.1007/s11803-015-0047-9
[15] 陆雪骏. 长江感潮河段桥墩冲刷研究[D]. 上海: 华东师范大学, 2016. LU Xue-jun. Research on the Local Scour at Bridge Piers in the Tidal Reach of the Changjiang River[D]. Shanghai: East China Normal University, 2016. (in Chinese)
[16] 何泓男, 戴国亮, 杨炎华, 等. 局部冲刷下群桩水平承载试验研究[J]. 岩土力学, 2015, 36(10): 2939-2945. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510027.htm HE Hong-liang, DAI Guo-liang, YANG Yan-hua, et al. Experimental study of lateral bearing behavior of pile group foundation under local scour condition[J]. Rock and Soil Mechanics, 2015, 36(10): 2939-2945. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510027.htm
[17] LIN C, HAN J, BENNETT C, et al. Analysis of laterally loaded piles in sand considering scour hole dimensions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 04014024. doi: 10.1061/(ASCE)GT.1943-5606.0001111
[18] ZHANG H, CHEN S L, LIANG F Y. Effects of scour-hole dimensions and soil stress history on the behavior of laterally loaded piles in soft clay under scour conditions[J]. Computers and Geotechnics, 2017, 84: 198-209. doi: 10.1016/j.compgeo.2016.12.008
[19] AMINI A, MELVILLE B W, ALI T M, et al. clear-water local scour around pile groups in shallow-water flow[J]. Journal of Hydraulic Engineering, 2012, 138(2): 177-185.
[20] 刘晶波, 王振宇, 杜修力, 等.波动问题中的三维时域黏弹性人工边界[J]. 工程力学, 2005, 22(6): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200506007.htm LIU Jing-bo, WANG Zhen-yu, DU Xiu-li, et al. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems[J]. Engineering Mechanics, 2005, 22(6): 46-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200506007.htm
[21] LEE S J, KOMATITSCH D, HUANG B S, et al. Effects of topography on seismic-wave propagation: an example from Northern Taiwan[J]. Bulletin of the Seismological Society of America, 2009, 99(1): 314-325.
[22] KHANBABAZADEH H, IYISAN R. A numerical study on the 2d behavior of clayey basins[J]. Soil Dynamics and Earthquake Engineering, 2014, 66: 31-41
[23] LIN C. Evaluation of Lateral Behavior of Pile-Supported Bridges Under Scour Conditions[D]. Kansas: University of Kansas, 2012
[24] MAKRIS N, GAZETAS G. Dynamic pile-soil-pile interaction. Part II: Lateral and seismic response[J]. Earthquake Engineering & Structural Dynamics, 1992, 21(2): 145-162.
[25] PRIESTLEY M J N, SEIBLE F, CALVI G M. Seismic Design and Retrofit of Bridges[M]. New York: John Wiley & Sons, 1996.
[26] HWANG J S, SHENG L H, GATES J H. Practical analysis of bridges on isolation bearings with Bi-linear hysteresis characteristics[J]. Earthquake Spectra, 1994, 10(4): 705-727.
[27] SONG S T, CHAI Y H. Performance assessment of multi-column bents with extended pile-shafts under lateral earthquake loads[J]. The IES Journal Part A: Civil & Structural Engineering, 2008, 1(1): 39-54.
-
期刊类型引用(10)
1. 江杰,余云东,欧孝夺,柴文成,罗豪豪. 非对称局部冲刷条件下组合受荷桩水平承载力分析. 工程力学. 2025(03): 191-202 . 百度学术
2. 王磊,吕忠达,王飞,赵卓. 深水大直径桥墩水下振动台试验研究. 桥梁建设. 2025(01): 110-116 . 百度学术
3. 李雨润,刘毅,梁旭华. 液化场地-群桩-上部结构动力特性研究综述. 河北工业大学学报. 2024(01): 74-80 . 百度学术
4. 戴隆强. 基于GA-WNN的桥梁基础结构局部冲刷风险模糊评估方法. 粉煤灰综合利用. 2024(01): 145-149 . 百度学术
5. 张聪,冯忠居,林路宇,周桂梅,陈露. 震陷场地变截面单桩动力特性与损伤评价. 岩土力学. 2024(10): 3037-3046+3057 . 百度学术
6. 李忠献,郑庆涛,苏俊省,赵博. 地震-波浪联合作用下考虑冲刷效应的跨海斜拉桥振动台试验研究. 土木工程学报. 2024(10): 71-81 . 百度学术
7. 张浩. 桩基振动对安置房建筑基坑斜桩的影响. 四川建材. 2024(12): 107-109 . 百度学术
8. 李哲,刘彤,郭家,冯忠居,刘路路,王富春. 铺前大桥群桩基础冲刷特性分析. 东南大学学报(自然科学版). 2023(04): 617-627 . 百度学术
9. 沙仁智. 长期冲刷下跨海桥梁桩基动力特性及地震响应研究. 铁道建筑技术. 2023(09): 90-93+118 . 百度学术
10. 杜程,范一娜. 不同桩基加固参数对既有桥梁抗震性能的影响. 山东交通科技. 2022(04): 54-56+115 . 百度学术
其他类型引用(5)