Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

粗粒氯盐渍土动态回弹模量试验研究与理论模型

冉武平, 王金山, 艾贤臣, 陈慧敏, 钱建固

冉武平, 王金山, 艾贤臣, 陈慧敏, 钱建固. 粗粒氯盐渍土动态回弹模量试验研究与理论模型[J]. 岩土工程学报, 2021, 43(9): 1746-1754. DOI: 10.11779/CJGE202109021
引用本文: 冉武平, 王金山, 艾贤臣, 陈慧敏, 钱建固. 粗粒氯盐渍土动态回弹模量试验研究与理论模型[J]. 岩土工程学报, 2021, 43(9): 1746-1754. DOI: 10.11779/CJGE202109021
RAN Wu-ping, WANG Jin-shan, AI Xian-chen, CHEN Hui-min, QIAN Jian-gu. Laboratory tests and theoretical model for dynamic resilient modulus of coarse-grained chlorine saline soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1746-1754. DOI: 10.11779/CJGE202109021
Citation: RAN Wu-ping, WANG Jin-shan, AI Xian-chen, CHEN Hui-min, QIAN Jian-gu. Laboratory tests and theoretical model for dynamic resilient modulus of coarse-grained chlorine saline soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1746-1754. DOI: 10.11779/CJGE202109021

粗粒氯盐渍土动态回弹模量试验研究与理论模型  English Version

基金项目: 

国家自然科学基金项目 51768070

民航飞行区设施耐久与运行安全重点实验室开放基金项目 MK201902

详细信息
    作者简介:

    冉武平(1977— ),男,博士,教授,主要从事岩土与道路工程方面的教学和科研工作。E-mail:rwpxju@163.com

    通讯作者:

    王金山, E-mail:wjs705358329@126.com

  • 中图分类号: TU443

Laboratory tests and theoretical model for dynamic resilient modulus of coarse-grained chlorine saline soil

  • 摘要: 为探究粗粒氯盐渍土动态回弹模量受荷载、盐分及湿度影响下的变化规律,借用室内动三轴试验,研究了不同应力状况、含水率及含盐量条件下粗粒氯盐渍土动态回弹特性。结果表明:动态回弹模量随围压和体应力增加而增大,随偏应力、盐分及水分的增大而减小;粗粒盐渍土中含盐量和含水率越高,围压、偏应力和体应力对其动态回弹模量影响越明显;同一应力水平下,含盐量和含水率的增加引起动态回弹模量的降低幅度逐渐增大,且盐分较水分影响更显著。基于三参数理论模型对试验结果进行回归分析发现,该模型具有较高的决定系数,并建立了精度较高的模型参数预估公式,可有效预测粗粒氯盐渍土动态回弹模量。
    Abstract: To explore the influences of load, salinity and humidity on the dynamic resilient modulus of coarse-grained chlorine saline soil, the dynamic rebound characteristics of the soil under different stresses, salt contents and water contents are studied based on the laboratory dynamic triaxial tests. The measured results reveal that the value of the dynamic resilient modulus inceases with the increase of the confining pressure and bulk stress, and decreases with the increase of the partial stress, salinity and moisture. The higher the salt content and moisture content in the soil, the more obvious the influences of the confining pressure, partial stress and bulk stress on its dynamic resilient modulus. Under the same stress, the value of the dynamic resilient modulus decreases more considerably with the increase of the salt content and moisture content, and the effects of salt tend to be more significant than those of water. Through the regression analysis of the test data based on a three-parameter theoretical model, the proposed model has a preferably higher determination coefficient, and the formula for predicting the model parameters with high precision is established. It is shown that the theoretical model is suitable to predict the dynamic resilient modulus of coarse-grained chlorine saline soil.
  • 图  1   测试试样土样粒径分配曲线

    Figure  1.   Test sample grain-size distribution curve of soil sample

    图  2   标准三轴压力室

    Figure  2.   Dynamic triaxial pressure chamber

    图  3   含水率w=5.1%时不同围压下动态回弹模量MR与偏应力σd关系

    Figure  3.   Relationship between MR and σd under different confining pressures at water content of 5.1%

    图  4   含水率w=5.1%时不同偏应力下动态回弹模量MR与体应力θ关系

    Figure  4.   Relationship between MR and θ under different partial stresses at water content of 5.1%

    图  5   围压σ3=45 kPa时不同含盐量下动态回弹模量MR与偏应力σd关系

    Figure  5.   Relationship between MR and σd under different salt contents at confining pressure of 45 kPa

    图  6   偏应力σd=1.0 σ3时不同含盐量下动态回弹模量MR与体应力θ关系

    Figure  6.   Relationship between MR and θ under different salt contents at σd=1.0 σ3

    图  7   围压σ3=45 kPa时不同含盐量下动态回弹模量MR与含水率w关系

    Figure  7.   Relationship between MR and w under different salt contents at confining pressure of 45 kPa

    图  8   围压σ3=45 kPa时不同含水率下动态回弹模量MR与含盐量Z关系

    Figure  8.   Relationship between MR and Z under different water contents at confining pressure of 45 kPa

    图  9   动态回弹模量实测值与预测值对比

    Figure  9.   Comparison between measured and predicted values

    图  10   基于物性指标的预测值与实测值相关性

    Figure  10.   Correlation between predicted and measured values based on physical property indexes

    表  1   路基粗粒土三轴试验应力加载序列

    Table  1   Loading sequence of triaxial tests on coarse-grained soil

    加载序列号围压应力σ3/kPa接触应力0.2σ3/kPa偏应力σd/kPa荷载次数
    0-预载306601000
     11538100
    230615100
    345923100
    4601230100
    5801640100
    615315100
    730630100
    845945100
    9601260100
    10801680100
    1115330100
    1230660100
    1345990100
    146012120100
    158016160100
    下载: 导出CSV

    表  2   路基土回弹模量典型复合模型

    Table  2   Typical composite models for resilient modulus of subgrade soil

    提出者模型名称模型公式模型的特点
    Uzan[21]Uzan模型MR=k1θk2σk3d①存在量纲问题;②存在模量不定值问题
    Witczak等[22]八面体剪应力模型MR=k1pa(θpa)k2(τoctpa)k3①存在模量不定值问题
    Lytton等[23]Superpave性能模型MR=k1pa(θ3k4pa)k2(τoctpa)k3τoct→0时出现计算困难,②需在剪应力项中加1
    NCHRP 1-28A[24]NCHRP 1-28A模型MR=k1pa(θpa)k2(τoctpa+1)k3①考虑了体应力和剪应力影响;②克服了量纲和模量不定值问题
    注:MR为动态回弹模量(MPa);pa为大气压强绝对值,通常取100kPa;θ为体应力(kPa),θ=σ1+σ2+σ3,σ1,σ2,σ3为主应力;τoct为八面体剪应力(kPa),τoct=(σ1σ2)2+(σ1σ3)2+(σ2σ3)2/3ki为模型参数,k1,k2≥0,k3≤0,k4≤0。
    下载: 导出CSV

    表  3   动态回弹模量理论模型参数回归分析结果

    Table  3   Results of parameter regression analysis of prediction model for dynamic resilient modulus

    测试工况模型参数相关系数最大残差值
    含盐量Z/%含水率w/%k1k2k3R2Max
    0.04.01.4970.242-0.4520.9078.38
    5.11.4660.255-0.5800.8898.59
    6.01.4330.279-0.8230.8798.51
    2.04.01.4070.428-1.2880.9718.77
    5.11.3820.407-1.2690.9638.18
    6.01.3090.393-1.3100.9507.82
    5.04.01.1870.503-1.3930.9668.06
    5.11.1180.499-1.3660.9597.58
    6.01.0770.505-1.5520.9528.33
    8.04.00.9760.615-1.6170.9697.75
    5.10.9190.644-1.7190.9687.68
    6.00.8540.687-1.7290.9578.20
    注:回归分析时,MR的单位为MPa,应力单位为kPa。
    下载: 导出CSV
  • [1]

    SEED H B, CHAN C K, LEE C E. Resilient characteristics of subgrade soils and their relations to fatigue failures in asphalt pavements[C]//Proceedings of International Conference on the Structural Design of Asphalt Pavements Supplement, 1962, Michigan.

    [2]

    ANDREI D, WITCZAK M W, SCHWARTZ C W, et al. Harmo-nized resilient modulus test method for unbound pavement materials[J]. Transportation Research Record: Journal of the Transportation Research Board, 2004, 1874(1): 29-37. doi: 10.3141/1874-04

    [3]

    RAHIM A M. Subgrade soil index properties to estimate resilient modulus for pavement design[J]. International Journal of Pavement Engineering, 2005, 6(3): 163-169. doi: 10.1080/10298430500140891

    [4] 凌建明, 苏华才, 谢华昌, 等. 路基土动态回弹模量的试验研究[J]. 地下空间与工程学报, 2010, 6(5): 919-925. doi: 10.3969/j.issn.1673-0836.2010.05.008

    LING Jian-ming, SU Hua-cai, XIE Hua-chang, et al. Laboratory research on dynamic resilient modulus of subgrade soil[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(5): 919-925. (in Chinese) doi: 10.3969/j.issn.1673-0836.2010.05.008

    [5] 陈声凯, 凌建明, 罗志刚. 路基土回弹模量应力依赖性分析及预估模型[J]. 土木工程学报, 2007, 40(6): 95-99. doi: 10.3321/j.issn:1000-131X.2007.06.017

    CHEN Sheng-kai, LING Jian-ming, LUO Zhi-gang. Stress-dependent characteristics and prediction model of the resilient modulus of subgrade soils[J]. China Civil Engineering Journal, 2007, 40(6): 95-99. (in Chinese) doi: 10.3321/j.issn:1000-131X.2007.06.017

    [6] 冉武平, 李玲, 张翛, 等. 重塑黄土动态回弹模量依赖性分析及预估模型[J]. 湖南大学学报(自然科学版), 2018, 45(9): 130-137. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201809015.htm

    RAN Wu-ping, LI Ling, ZHANG Xiao, et al. Dependence analysis and prediction model of dynamic resilient modulus of remodeled-loess[J]. Journal of Hunan University(Natural Sciences), 2018, 45(9): 130-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201809015.htm

    [7] 刘维正, 曾奕珺, 姚永胜, 等. 含水率变化下压实路基土动态回弹模量试验研究与预估模型[J]. 岩土工程学报, 2019, 41(1): 175-183. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901024.htm

    LIU Wei-zheng, ZENG Yi-jun, YAO Yong-sheng, et al. Experimental study and prediction model of dynamic resilient modulus of compacted subgrade soils subjected to moisture variation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 175-183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901024.htm

    [8] 董城, 李志勇, 岳志平, 等. 砂土路用动态特性试验研究[J]. 岩石力学与工程学报, 2012, 31(增刊1): 3407-3412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1108.htm

    DONG Cheng, LI Zhi-yong, YUE Zhi-ping, et al. Experi-mental study of dynamic characteristics of sand for highway subgrade[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3407-3412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1108.htm

    [9]

    MUHANNA A S, RAHMAN M S, LAMBE P C. Resilient modulus measurement of fine-grained subgrade soils[J]. Transportation Research Record, 1999, 1687(1): 3-12. doi: 10.3141/1687-01

    [10] 张翛, 赵队家, 刘少文, 等. 美国路基土回弹模量确定方法研究现状[J]. 重庆交通大学学报(自然科学版), 2012, 31(4): 795-798. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201204016.htm

    ZHANG Xiao, ZHAO Dui-jia, LIU Shao-wen, et al. Research progress on determination of resilient modulus of subgrade soils in U. S.[J]. Journal of Chongqing Jiaotong University (Natural Science), 2012, 31(4): 795-798. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201204016.htm

    [11] 凌建明, 陈声凯, 曹长伟. 路基土回弹模量影响因素分析[J]. 建筑材料学报, 2007, 10(4): 446-451. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200704012.htm

    LING Jian-ming, CHEN Sheng-kai, CAO Chang-wei. Analysis of influence factors on resilient modulus of subgrade soils[J]. Journal of Building Materials, 2007, 10(4): 446-451. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200704012.htm

    [12] 朱俊高, 王元龙, 贾华, 等. 粗粒土回弹特性试验研究[J]. 岩土工程学报, 2011, 33(6): 950-954. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106024.htm

    ZHU Jun-gao, WANG Yuan-long, JIA Hua, et al. Experimental study on resil-ience behaviour of coarse grained soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 950-954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106024.htm

    [13] 罗志刚. 路基与粒料层动态模量参数研究[D]. 上海: 同济大学交通运输工程学院, 2007: 52-72.

    LUO Zhi-gang. Rsearch on Dynamic Modulus Parameters of Subgrade and Granular Layers[D]. Shanghai: College of Transportation Engineering, Tongji University, 2007: 52-72. (in Chinese)

    [14] 陈声凯, 凌建明, 张世洲. 路基土动态回弹模量室内试验加载序列的确定[J]. 公路, 2006, 11(5): 148-152. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200611033.htm

    CHEN Sheng-kai, LING Jian-ming, ZHANG Shi-zhou. Fixing loading sequence for resilient modulus test of subgrade soil[J]. Highway, 2006, 11(5): 148-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200611033.htm

    [15]

    ZHANG J H, PENG J H, LIU W Z, et al. Predicting resilient modulus of fine-grained subgrade soils considering relative compaction and matric suction[J]. Road Materials and Pavement Design, 2021, 22(3): 703-715.

    [16] 张军辉, 彭俊辉, 郑健龙. 路基土动态回弹模量预估进展与展望[J]. 中国公路学报, 2020, 33(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001001.htm

    ZHANG Jun-hui, PENG Jun-hui, ZHENG Jian-long. Progress and prospect of the prediction model of the resilient modulus of subgrade soils[J]. China Journal of Highway and Transport, 2020, 33(1): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001001.htm

    [17]

    SEED H B, MITRY F G, MONOSMITH C L, et al. Prediction of Pavement Deflection from Laboratory Repeated Load Tests (NCHRP Report 35)[R]. Washington D C: Transportation Research Board, 1967.

    [18]

    THOMPSON M R, ELLIOTT R P. ILLI-PAVE Based Re-sponse Algorithms for Design of Conventional Flexible Pavements[R]. Washington D C: Transportation Research Record, 1985.

    [19]

    MOOSADEH J, WITCZAK M W. Prediction of Subgrade Moduli for Soil That Exhibits Nonlinear Behavior[R]. Washington D C: Transportation Research Record, 1981.

    [20]

    DRUMM E C, BOATENG-POKU Y, JOHNSON P T. Esti-mation of subgrade resilient modulus from standard tests[J]. Journal of Geotechnical Engineering, 1990, 116(5): 774-789.

    [21]

    UZAN J. Characterization of Granular Materials[R]. Washington D C: Transportation Research Record 1022, Transportation Research Board, National Research Council, 1985.

    [22]

    WITCZAK M W, UZAN J. The Universal Airport Pavement Design System-Report I of V: Granular Material Characterization[R]. Washington D C: Department of Civil Engineering, University of Maryland, 1988.

    [23]

    LYTTON R L, UZAN J, FERNANDO E G, et al. Development and Validation of Performance Prediction Models and Specifi-Cations for Asphalt Binders and Paving Mixes[R]. Washington D C: Report SHRP A-357, Strategic Highway Research Program, National Research Council, 1993.

    [24]

    NCHRP Project 1-28. Laboratory Determination of Resilient Modulus for Flexible Pavement Design-Final Report[R]. Washington D C: National Cooperative Highway Research Program, Transportation Research Board, National Research Council, 1997.

    [25] 洪安宇, 杨晓松, 党进谦, 等. 非饱和氯盐渍土抗剪强度特性试验研究[J]. 长江科学院院报, 2013, 30(4): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201304012.htm

    HONG An-yu, YANG Xiao-song, DANG Jin-qian, et al. Shear strength property of unsaturated chlorine saline soil[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(4): 52-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201304012.htm

    [26] 陈炜韬, 王明年, 王鹰, 等. 含盐量及含水率对氯盐盐渍土抗剪强度参数的影响[J]. 中国铁道科学, 2006, 27(4): 1-5.

    CHEN Wei-tao, WANG Ming-nian, WANG Ying, et al. Influence of salt content and water content on the shearing strength parameters of chlorine saline soil[J]. China Railway Science, 2006, 27(4): 1-5. (in Chinese)

    [27] 张宁霞, 刘保健, 赵丽娅. 氯盐渍土的工程特性研究[J]. 工程勘察, 2012, 40(6): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201206005.htm

    ZHANG Ning-xia, LIU Bao-jian, ZHAO Li-ya. Study on engineering characteristics of chlorine saline soil[J]. Geotechnical Investigation & Surveying, 2012, 40(6): 14-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201206005.htm

    [28] 李永红. 氯盐渍土的变形和强度特性研究[D]. 杨凌: 西北农林科技大学, 2006.

    LI Yong-hong. Research on Deformation and Strength Properties of Chlorine Saline Soil[D]. Yangling: Northwest A&F University, 2006. (in Chinese)

    [29]

    YAU A, VON QUINTUS H L. Predicting elastic response characteristic of unbound materials and soils[R]. Washington D C: 83rd Annual Meeting of Transportation Research Board (CD-ROM), 2004.

    [30]

    FHWA. Study of LTPP laboratory resil-ient modulus test data and response characteristics-final report[R]. FHWA-RD-02-051, LTPP, Federal Highway Administration, 2002.

图(10)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-11
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回