Laboratory tests and theoretical model for dynamic resilient modulus of coarse-grained chlorine saline soil
-
摘要: 为探究粗粒氯盐渍土动态回弹模量受荷载、盐分及湿度影响下的变化规律,借用室内动三轴试验,研究了不同应力状况、含水率及含盐量条件下粗粒氯盐渍土动态回弹特性。结果表明:动态回弹模量随围压和体应力增加而增大,随偏应力、盐分及水分的增大而减小;粗粒盐渍土中含盐量和含水率越高,围压、偏应力和体应力对其动态回弹模量影响越明显;同一应力水平下,含盐量和含水率的增加引起动态回弹模量的降低幅度逐渐增大,且盐分较水分影响更显著。基于三参数理论模型对试验结果进行回归分析发现,该模型具有较高的决定系数,并建立了精度较高的模型参数预估公式,可有效预测粗粒氯盐渍土动态回弹模量。Abstract: To explore the influences of load, salinity and humidity on the dynamic resilient modulus of coarse-grained chlorine saline soil, the dynamic rebound characteristics of the soil under different stresses, salt contents and water contents are studied based on the laboratory dynamic triaxial tests. The measured results reveal that the value of the dynamic resilient modulus inceases with the increase of the confining pressure and bulk stress, and decreases with the increase of the partial stress, salinity and moisture. The higher the salt content and moisture content in the soil, the more obvious the influences of the confining pressure, partial stress and bulk stress on its dynamic resilient modulus. Under the same stress, the value of the dynamic resilient modulus decreases more considerably with the increase of the salt content and moisture content, and the effects of salt tend to be more significant than those of water. Through the regression analysis of the test data based on a three-parameter theoretical model, the proposed model has a preferably higher determination coefficient, and the formula for predicting the model parameters with high precision is established. It is shown that the theoretical model is suitable to predict the dynamic resilient modulus of coarse-grained chlorine saline soil.
-
-
表 1 路基粗粒土三轴试验应力加载序列
Table 1 Loading sequence of triaxial tests on coarse-grained soil
加载序列号 围压应力 σ3 /kPa接触应力0.2 σ3 /kPa偏应力 σd /kPa荷载次数 0-预载 30 6 60 1000 1 15 3 8 100 2 30 6 15 100 3 45 9 23 100 4 60 12 30 100 5 80 16 40 100 6 15 3 15 100 7 30 6 30 100 8 45 9 45 100 9 60 12 60 100 10 80 16 80 100 11 15 3 30 100 12 30 6 60 100 13 45 9 90 100 14 60 12 120 100 15 80 16 160 100 表 2 路基土回弹模量典型复合模型
Table 2 Typical composite models for resilient modulus of subgrade soil
提出者 模型名称 模型公式 模型的特点 Uzan[21] Uzan模型 MR=k1θk2σk3d ①存在量纲问题;②存在模量不定值问题 Witczak等[22] 八面体剪应力模型 MR=k1pa(θpa)k2(τoctpa)k3 ①存在模量不定值问题 Lytton等[23] Superpave性能模型 MR=k1pa(θ−3k4pa)k2(τoctpa)k3 ①τoct→0时出现计算困难,②需在剪应力项中加1 NCHRP 1-28A[24] NCHRP 1-28A模型 MR=k1pa(θpa)k2(τoctpa+1)k3 ①考虑了体应力和剪应力影响;②克服了量纲和模量不定值问题 注: MR 为动态回弹模量(MPa);pa 为大气压强绝对值,通常取100kPa;θ 为体应力(kPa),θ=σ1+σ2+σ3 ,σ1 ,σ2 ,σ3 为主应力;τoct 为八面体剪应力(kPa),τoct=√(σ1−σ2)2+(σ1−σ3)2+(σ2−σ3)2/3 ;ki 为模型参数,k1 ,k2 ≥0,k3 ≤0,k4 ≤0。表 3 动态回弹模量理论模型参数回归分析结果
Table 3 Results of parameter regression analysis of prediction model for dynamic resilient modulus
测试工况 模型参数 相关系数 最大残差值 含盐量Z/% 含水率w/% k1 k2 k3 R2 Max 0.0 4.0 1.497 0.242 -0.452 0.907 8.38 5.1 1.466 0.255 -0.580 0.889 8.59 6.0 1.433 0.279 -0.823 0.879 8.51 2.0 4.0 1.407 0.428 -1.288 0.971 8.77 5.1 1.382 0.407 -1.269 0.963 8.18 6.0 1.309 0.393 -1.310 0.950 7.82 5.0 4.0 1.187 0.503 -1.393 0.966 8.06 5.1 1.118 0.499 -1.366 0.959 7.58 6.0 1.077 0.505 -1.552 0.952 8.33 8.0 4.0 0.976 0.615 -1.617 0.969 7.75 5.1 0.919 0.644 -1.719 0.968 7.68 6.0 0.854 0.687 -1.729 0.957 8.20 注: 回归分析时,MR的单位为MPa,应力单位为kPa。 -
[1] SEED H B, CHAN C K, LEE C E. Resilient characteristics of subgrade soils and their relations to fatigue failures in asphalt pavements[C]//Proceedings of International Conference on the Structural Design of Asphalt Pavements Supplement, 1962, Michigan.
[2] ANDREI D, WITCZAK M W, SCHWARTZ C W, et al. Harmo-nized resilient modulus test method for unbound pavement materials[J]. Transportation Research Record: Journal of the Transportation Research Board, 2004, 1874(1): 29-37. doi: 10.3141/1874-04
[3] RAHIM A M. Subgrade soil index properties to estimate resilient modulus for pavement design[J]. International Journal of Pavement Engineering, 2005, 6(3): 163-169. doi: 10.1080/10298430500140891
[4] 凌建明, 苏华才, 谢华昌, 等. 路基土动态回弹模量的试验研究[J]. 地下空间与工程学报, 2010, 6(5): 919-925. doi: 10.3969/j.issn.1673-0836.2010.05.008 LING Jian-ming, SU Hua-cai, XIE Hua-chang, et al. Laboratory research on dynamic resilient modulus of subgrade soil[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(5): 919-925. (in Chinese) doi: 10.3969/j.issn.1673-0836.2010.05.008
[5] 陈声凯, 凌建明, 罗志刚. 路基土回弹模量应力依赖性分析及预估模型[J]. 土木工程学报, 2007, 40(6): 95-99. doi: 10.3321/j.issn:1000-131X.2007.06.017 CHEN Sheng-kai, LING Jian-ming, LUO Zhi-gang. Stress-dependent characteristics and prediction model of the resilient modulus of subgrade soils[J]. China Civil Engineering Journal, 2007, 40(6): 95-99. (in Chinese) doi: 10.3321/j.issn:1000-131X.2007.06.017
[6] 冉武平, 李玲, 张翛, 等. 重塑黄土动态回弹模量依赖性分析及预估模型[J]. 湖南大学学报(自然科学版), 2018, 45(9): 130-137. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201809015.htm RAN Wu-ping, LI Ling, ZHANG Xiao, et al. Dependence analysis and prediction model of dynamic resilient modulus of remodeled-loess[J]. Journal of Hunan University(Natural Sciences), 2018, 45(9): 130-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201809015.htm
[7] 刘维正, 曾奕珺, 姚永胜, 等. 含水率变化下压实路基土动态回弹模量试验研究与预估模型[J]. 岩土工程学报, 2019, 41(1): 175-183. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901024.htm LIU Wei-zheng, ZENG Yi-jun, YAO Yong-sheng, et al. Experimental study and prediction model of dynamic resilient modulus of compacted subgrade soils subjected to moisture variation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 175-183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901024.htm
[8] 董城, 李志勇, 岳志平, 等. 砂土路用动态特性试验研究[J]. 岩石力学与工程学报, 2012, 31(增刊1): 3407-3412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1108.htm DONG Cheng, LI Zhi-yong, YUE Zhi-ping, et al. Experi-mental study of dynamic characteristics of sand for highway subgrade[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3407-3412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1108.htm
[9] MUHANNA A S, RAHMAN M S, LAMBE P C. Resilient modulus measurement of fine-grained subgrade soils[J]. Transportation Research Record, 1999, 1687(1): 3-12. doi: 10.3141/1687-01
[10] 张翛, 赵队家, 刘少文, 等. 美国路基土回弹模量确定方法研究现状[J]. 重庆交通大学学报(自然科学版), 2012, 31(4): 795-798. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201204016.htm ZHANG Xiao, ZHAO Dui-jia, LIU Shao-wen, et al. Research progress on determination of resilient modulus of subgrade soils in U. S.[J]. Journal of Chongqing Jiaotong University (Natural Science), 2012, 31(4): 795-798. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201204016.htm
[11] 凌建明, 陈声凯, 曹长伟. 路基土回弹模量影响因素分析[J]. 建筑材料学报, 2007, 10(4): 446-451. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200704012.htm LING Jian-ming, CHEN Sheng-kai, CAO Chang-wei. Analysis of influence factors on resilient modulus of subgrade soils[J]. Journal of Building Materials, 2007, 10(4): 446-451. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200704012.htm
[12] 朱俊高, 王元龙, 贾华, 等. 粗粒土回弹特性试验研究[J]. 岩土工程学报, 2011, 33(6): 950-954. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106024.htm ZHU Jun-gao, WANG Yuan-long, JIA Hua, et al. Experimental study on resil-ience behaviour of coarse grained soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 950-954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106024.htm
[13] 罗志刚. 路基与粒料层动态模量参数研究[D]. 上海: 同济大学交通运输工程学院, 2007: 52-72. LUO Zhi-gang. Rsearch on Dynamic Modulus Parameters of Subgrade and Granular Layers[D]. Shanghai: College of Transportation Engineering, Tongji University, 2007: 52-72. (in Chinese)
[14] 陈声凯, 凌建明, 张世洲. 路基土动态回弹模量室内试验加载序列的确定[J]. 公路, 2006, 11(5): 148-152. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200611033.htm CHEN Sheng-kai, LING Jian-ming, ZHANG Shi-zhou. Fixing loading sequence for resilient modulus test of subgrade soil[J]. Highway, 2006, 11(5): 148-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200611033.htm
[15] ZHANG J H, PENG J H, LIU W Z, et al. Predicting resilient modulus of fine-grained subgrade soils considering relative compaction and matric suction[J]. Road Materials and Pavement Design, 2021, 22(3): 703-715.
[16] 张军辉, 彭俊辉, 郑健龙. 路基土动态回弹模量预估进展与展望[J]. 中国公路学报, 2020, 33(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001001.htm ZHANG Jun-hui, PENG Jun-hui, ZHENG Jian-long. Progress and prospect of the prediction model of the resilient modulus of subgrade soils[J]. China Journal of Highway and Transport, 2020, 33(1): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001001.htm
[17] SEED H B, MITRY F G, MONOSMITH C L, et al. Prediction of Pavement Deflection from Laboratory Repeated Load Tests (NCHRP Report 35)[R]. Washington D C: Transportation Research Board, 1967.
[18] THOMPSON M R, ELLIOTT R P. ILLI-PAVE Based Re-sponse Algorithms for Design of Conventional Flexible Pavements[R]. Washington D C: Transportation Research Record, 1985.
[19] MOOSADEH J, WITCZAK M W. Prediction of Subgrade Moduli for Soil That Exhibits Nonlinear Behavior[R]. Washington D C: Transportation Research Record, 1981.
[20] DRUMM E C, BOATENG-POKU Y, JOHNSON P T. Esti-mation of subgrade resilient modulus from standard tests[J]. Journal of Geotechnical Engineering, 1990, 116(5): 774-789.
[21] UZAN J. Characterization of Granular Materials[R]. Washington D C: Transportation Research Record 1022, Transportation Research Board, National Research Council, 1985.
[22] WITCZAK M W, UZAN J. The Universal Airport Pavement Design System-Report I of V: Granular Material Characterization[R]. Washington D C: Department of Civil Engineering, University of Maryland, 1988.
[23] LYTTON R L, UZAN J, FERNANDO E G, et al. Development and Validation of Performance Prediction Models and Specifi-Cations for Asphalt Binders and Paving Mixes[R]. Washington D C: Report SHRP A-357, Strategic Highway Research Program, National Research Council, 1993.
[24] NCHRP Project 1-28. Laboratory Determination of Resilient Modulus for Flexible Pavement Design-Final Report[R]. Washington D C: National Cooperative Highway Research Program, Transportation Research Board, National Research Council, 1997.
[25] 洪安宇, 杨晓松, 党进谦, 等. 非饱和氯盐渍土抗剪强度特性试验研究[J]. 长江科学院院报, 2013, 30(4): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201304012.htm HONG An-yu, YANG Xiao-song, DANG Jin-qian, et al. Shear strength property of unsaturated chlorine saline soil[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(4): 52-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201304012.htm
[26] 陈炜韬, 王明年, 王鹰, 等. 含盐量及含水率对氯盐盐渍土抗剪强度参数的影响[J]. 中国铁道科学, 2006, 27(4): 1-5. CHEN Wei-tao, WANG Ming-nian, WANG Ying, et al. Influence of salt content and water content on the shearing strength parameters of chlorine saline soil[J]. China Railway Science, 2006, 27(4): 1-5. (in Chinese)
[27] 张宁霞, 刘保健, 赵丽娅. 氯盐渍土的工程特性研究[J]. 工程勘察, 2012, 40(6): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201206005.htm ZHANG Ning-xia, LIU Bao-jian, ZHAO Li-ya. Study on engineering characteristics of chlorine saline soil[J]. Geotechnical Investigation & Surveying, 2012, 40(6): 14-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201206005.htm
[28] 李永红. 氯盐渍土的变形和强度特性研究[D]. 杨凌: 西北农林科技大学, 2006. LI Yong-hong. Research on Deformation and Strength Properties of Chlorine Saline Soil[D]. Yangling: Northwest A&F University, 2006. (in Chinese)
[29] YAU A, VON QUINTUS H L. Predicting elastic response characteristic of unbound materials and soils[R]. Washington D C: 83rd Annual Meeting of Transportation Research Board (CD-ROM), 2004.
[30] FHWA. Study of LTPP laboratory resil-ient modulus test data and response characteristics-final report[R]. FHWA-RD-02-051, LTPP, Federal Highway Administration, 2002.