• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土工格室不同结点连接方式失效机制试验研究

左政, 杨广庆, 刘英, 杜天玲, 王志杰, 于凡

左政, 杨广庆, 刘英, 杜天玲, 王志杰, 于凡. 土工格室不同结点连接方式失效机制试验研究[J]. 岩土工程学报, 2021, 43(9): 1682-1690. DOI: 10.11779/CJGE202109013
引用本文: 左政, 杨广庆, 刘英, 杜天玲, 王志杰, 于凡. 土工格室不同结点连接方式失效机制试验研究[J]. 岩土工程学报, 2021, 43(9): 1682-1690. DOI: 10.11779/CJGE202109013
ZUO Zheng, YANG Guang-qing, LIU Ying, DU Tian-ling, WANG Zhi-jie, YU Fan. Experimental investigations on failure mechanism of different junction connections of geocells[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1682-1690. DOI: 10.11779/CJGE202109013
Citation: ZUO Zheng, YANG Guang-qing, LIU Ying, DU Tian-ling, WANG Zhi-jie, YU Fan. Experimental investigations on failure mechanism of different junction connections of geocells[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1682-1690. DOI: 10.11779/CJGE202109013

土工格室不同结点连接方式失效机制试验研究  English Version

基金项目: 

国家自然科学基金项目 52079078

河北省高等学校科学技术研究项目 BJ2020045

河北省博士研究生创新项目 CXZZBS2020145

详细信息
    作者简介:

    左政(1993— ),男,博士研究生,主要从事土工合成材料性能与加筋土技术研究。E-mail:geozz@stdu.edu.cn

    通讯作者:

    杨广庆, E-mail:yanggq@stdu.edu.cn

  • 中图分类号: TU472

Experimental investigations on failure mechanism of different junction connections of geocells

  • 摘要: 结点连接方式对土工格室的性能至关重要。结点在加筋结构中往往会受到不同方向的作用力,然而对结点在不同受力状态下的失效机制缺乏系统的研究。通过对焊接、插接、铆接3种结点连接方式的土工格室进行单轴拉伸试验,研究了结点连接方式对土工格室条带性能的影响,比较了在不同受力状态下结点的失效模式及抗拉强度。此外,通过引入“条带强度保持率”、“条带变形保持率”、“结点强度发挥率”评价了不同结点连接方式的性能。结果表明:焊接结点对HDPE土工格室条带拉伸性能的协调发挥影响较低,为4.82%;而铆接结点对PET土工格室条带影响较高,为22.2%。焊接、铆接、插接结点主要受剥离强度的控制,但焊接结点的剥离结点强度发挥率可达28.3%,分别是插接、铆接结点强度发挥率的11.32倍、6.58倍,体现了焊接结点的性能优势。插接结点在3种受力状态下结点强度相差很大,需采取注塑等措施来改善结点在剪切、剥离作用下的强度,从而均衡发挥插接结点的性能。试验结果可为土工格室的合理选用以及加筋机理的研究提供参考。
    Abstract: The connection mode of junctions is crucial to the performance of geocells. The junction will be generally subjected to different directions of loading in the reinforced structure. However, there is a lack of detailed researches on the failure mechanism of the junctions under different loading models. Through the uniaxial tensile tests on the geocells with three junctions of welding, latching and riveting, the effects of connection modes on the performance of geocell strips are studied, and the failure modes and tensile strength of the junctions under different loading models are compared. The performance of different junction connections is evaluated by the indexes like "strip strength retention rate", "strip deformation retention rate", and "junction strength utilization rate". The results show that the welding junctions have the lower impact on coordination of tensile properties of HDPE geocell strips, which is 4.82%, while the riveting junctions have the higher impact on the coordination of PET geocell strips, which is 22.2%. The welding, riveting and latching junctions are mainly controlled by the peeling strength. However, the strength utilization rate of the welding junctions under peeling can reach 28.3%, which is 11.32 times and 6.58 times that of the latching and riveting ones, respectively, reflecting the performance advantages of the welding junctions. The strength of the latching junctions varies greatly under three loading models, and the measures like injection connection need to be taken to improve the strength of the junctions under shearing and peeling to balance the performance of the latching junctions. The test results can provide references for the reasonable selection of geocells and the study on reinforcement mechanism.
  • 图  1   土工合成材料拉伸试验仪

    Figure  1.   Tensile test apparatus for geosynthetics

    图  2   土工格室示意图和试验方案

    Figure  2.   Schematic of geocell and experimental programs

    图  3   HDPE土工格室条带-焊接结点拉伸结果

    Figure  3.   Tensile results of HDPE strips with welding junction

    图  4   PP土工格室条带-插接结点拉伸结果

    Figure  4.   Tensile results of PP geocell strips with injection junction

    图  5   密堆积结构的解折叠过程

    Figure  5.   Unfolding process of closed-packed structure

    图  6   PET土工格室条带-铆接结点拉伸结果

    Figure  6.   Tensile results of PET geocell strips with riveting junction

    图  7   结点连接方式对土工格室条带性能的影响

    Figure  7.   Effects of junction connections on performance of strips

    图  8   不同受力状态下焊接结点试样的失效模式

    Figure  8.   Failure modes of welding junctions under different loading modes

    图  9   不同受力状态下焊接结点的抗拉强度对比

    Figure  9.   Comparison of strength of welding junctions under different loading modes

    图  10   不同受力状态下结点的力学模型

    Figure  10.   Mechanical models for junctions under different loading modes

    图  11   不同受力状态下插接结点试样的失效模式

    Figure  11.   Failure modes of latching junctions under different loading modes

    图  12   不同受力状态下插接结点的抗拉强度对比

    Figure  12.   Comparison of strength of latching junctions under different loading modes

    图  13   不同受力状态下铆接结点试样的失效模式

    Figure  13.   Failure modes of riveting junctions under different loading modes

    图  14   不同受力状态下铆接结点的抗拉强度对比

    Figure  14.   Comparison of strength of riveting junctions under different loading modes

    表  1   试验用土工格室参数

    Table  1   Parameters of geocells used in tests

    结点连接方式条带材质条带高度H/ mm结点距离A/ mm
    焊接HDPE50400
    插接PP50400
    铆接PET50400
    下载: 导出CSV

    表  2   结点连接方式对土工格室条带性能影响的计算结果

    Table  2   Results of effect of junction connections on properties of geocell strips

    结点–条带材质条带强度保持率Sσ /%条带变形保持率Sε /%
    焊接-HDPE76.381.12
    插接-PP71.179.65
    铆接-PET64.742.50
    下载: 导出CSV

    表  3   不同结点连接方式在不同受力状态下的试验结果

    Table  3   Test results of different junction connections under different loading models

    结点连接方式剪切(J)剥离(B)对拉(D)
    σJ-J /(N·cm-1)Jσ-J/%σJ-B /(N·cm-1)Jσ-B/%σJ-D /(N·cm-1)Jσ-D/%
    焊接21855.111228.329474.2
    插接783.6542.5170478.1
    铆接1417.1864.333616.9
    下载: 导出CSV
  • [1]

    HEGDE A. Geocell reinforced foundation beds-past findings, present trends and future prospects: a state-of-the-art review[J]. Construction and Building Materials, 2017, 154: 658-674. doi: 10.1016/j.conbuildmat.2017.07.230

    [2] 赵明华, 陈大兴, 刘猛, 等. 考虑土拱效应影响的路堤荷载下土工格室加筋体变形分析[J]. 岩土工程学报, 2020, 42(4): 601-609. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004003.htm

    ZHAO Ming-hua, CHEN Da-xing, LIU Meng, et al. Deformation analysis of geocell-reinforced body under embankment load considering soil arch effect[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 601-609. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004003.htm

    [3] 李丽华, 崔飞龙, 肖衡林, 等. 轮胎与格室加筋路堤性能及承载力研究[J]. 岩土工程学报, 2017, 39(1): 81-88. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701008.htm

    LI Li-hua, CUI Fei-long, XIAO Heng-lin, et al. Performance and bearing capacity of embankments reinforced with waste tires and geocells[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 81-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701008.htm

    [4]

    SONG F, LIU H, MA L, et al. Numerical analysis of geocell-reinforced retaining wall failure modes[J]. Geotextiles and Geomembranes, 2018, 46(3): 284-296. doi: 10.1016/j.geotexmem.2018.01.004

    [5]

    KURIHASHI Y, OYAMA R, KOMURO M, et al. Experimental study on buffering system for concrete retaining walls using geocell filled with single-grain crushed stone[J]. International Journal of Civil Engineering, 2020, 18(10): 1097-1111. doi: 10.1007/s40999-020-00520-9

    [6]

    HALDER K, CHAKRABORTY D. Influence of soil spatial variability on the response of strip footing on geocell-reinforced slope[J]. Computers and Geotechnics, 2020, 122: 1-13.

    [7]

    BIABANI M M, INDRARATNA B, NIMBALKAR S. Behaviour of geocell reinforced sub-ballast under cyclic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(1): 109-119.

    [8] 侯娟, 张孟喜, 韩晓, 等. 单个高强土工格室作用机理的有限元分析[J]. 岩土工程学报, 2015, 37(增刊1): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1007.htm

    HOU Juan, ZHANG Meng-xi, HAN Xiao, et al. Mechanism of a high-strength geocell using FEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 31-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1007.htm

    [9]

    HEGDE A, SITHARAM T G. Joint strength and wall deformation characteristics of a single-cell geocell subjected to uniaxial compression[J]. International Journal of Geomechanics, 2014, 15(5): 04014080.

    [10]

    LIU Y, DENG A, JAKSA M. Failure mechanisms of geocell walls and junctions[J]. Geotextiles and Geomembranes, 2019, 47(2): 104-120.

    [11]

    HAN J, YANG X, LESHCHINSKY D, et al. Behavior of geocell-reinforced sand under a vertical load[J]. Transportation Research Record, 2008, 2045(1): 1-14.

    [12]

    LESHCHINSKY B, LING H. Effects of geocell confinement on strength and deformation behavior of gravel[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 340-352.

    [13]

    SONG F, LIU H, HU H, et al. Centrifuge tests of geocell-reinforced retaining walls at limit equilibrium[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(3): 5-13.

    [14]

    YANG X, HAN J, POKHAREL S K. Accelerated pavement testing of unpaved roads with geocell-reinforced sand bases[J]. Geotextiles and Geomembranes, 2012, 32: 95-103.

    [15] 高昂, 张孟喜, 刘芳, 等. 分级循环荷载下土工格室加筋路堤模型试验研究[J]. 岩土力学, 2016, 37(8): 2213-2221. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608012.htm

    GAO Ang, ZHANG Meng-xi, LIU Fang, et al. Model experimental study of embankment reinforced with geocells under stepped cyclic loading[J]. Rock and Soil Mechanics, 2016, 37(8): 2213-2221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608012.htm

    [16] 许淋颖. 土工格室加筋土挡墙试验研究[D]. 石家庄: 石家庄铁道大学, 2019.

    XU Lin-ying. Experimental Study on Geocell Reinforced Soil Retaining Wall[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2019. (in Chinese)

    [17]

    ADEM I, AYHAN G. Pullout behavior of geocell reinforcement in cohesionless soils[J]. Geotextiles and Geomembranes, 2020, 48(1): 71-81.

    [18] 刘杰. 塑料土工格栅拉伸性能及工艺研究[D]. 济南: 山东大学, 2015.

    LIU Jie. The Tensile Property and Technology Research of Plastic Geogrid[D]. Jinan: Shandong University, 2015. (in Chinese)

    [19] 孙训方, 方孝淑, 关来泰. 材料力学. 第5版[M]. 北京: 高等教育出版社, 2009.

    SUN Xun-fang, FANG Xiao-shu, GUAN Lai-tai. Mechanics of Materials[M]. Beijing: Higher Education Press, 2009. (in Chinese)

  • 期刊类型引用(7)

    1. 赵兵,申思,丁冠群. 浅析土工格室生态护坡抗冲刷性能——以简阳空港大道项目为例. 四川建筑. 2024(05): 281-283 . 百度学术
    2. 孙健,杨广庆,左政,梁训美,王奇伟. 熔接型聚丙烯土工格室拉伸特性试验研究. 科学技术与工程. 2023(20): 8788-8794 . 百度学术
    3. 王志杰,齐逸飞,杨广庆,蔡永明,刘伟超. 土工格室加筋碎石复合体大型三轴试验研究. 铁道学报. 2023(09): 161-169 . 百度学术
    4. 李丹,董建刚,胡波,李波. 土工格室加筋砂土大型叠环式剪切试验研究. 人民长江. 2023(12): 211-217 . 百度学术
    5. 左政,杨广庆,王贺,许淋颖,靳静,梁训美. 土工格室规格对加筋土剪切性能的影响. 岩土工程学报. 2022(06): 1053-1060 . 本站查看
    6. 王艳坤,刘杰,宋玲,张兴疆,高斌. 土工格室加固风积沙地基模型试验研究. 公路交通科技. 2022(07): 40-48 . 百度学术
    7. 蒲昌瑜,刘欣超,苏鹏辉,杨广庆. HDPE焊接型土工格室结点拉伸力学特性试验研究. 交通世界. 2022(28): 55-57 . 百度学术

    其他类型引用(10)

图(14)  /  表(3)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  20
  • PDF下载量:  81
  • 被引次数: 17
出版历程
  • 收稿日期:  2020-11-19
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回