压密效应对新型压密注浆土钉的强化研究

    叶新宇, 彭锐, 马新岩, 张升, 王善勇

    叶新宇, 彭锐, 马新岩, 张升, 王善勇. 压密效应对新型压密注浆土钉的强化研究[J]. 岩土工程学报, 2021, 43(9): 1649-1656,1738. DOI: 10.11779/CJGE202109009
    引用本文: 叶新宇, 彭锐, 马新岩, 张升, 王善勇. 压密效应对新型压密注浆土钉的强化研究[J]. 岩土工程学报, 2021, 43(9): 1649-1656,1738. DOI: 10.11779/CJGE202109009
    YE Xin-yu, PENG Rui, MA Xin-yan, ZHANG Sheng, WANG Shan-yong. Enhancement of compaction grouting on a compaction-grouted soil nail in sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1649-1656,1738. DOI: 10.11779/CJGE202109009
    Citation: YE Xin-yu, PENG Rui, MA Xin-yan, ZHANG Sheng, WANG Shan-yong. Enhancement of compaction grouting on a compaction-grouted soil nail in sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1649-1656,1738. DOI: 10.11779/CJGE202109009

    压密效应对新型压密注浆土钉的强化研究  English Version

    基金项目: 

    国家自然科学基金项目 51722812

    国家自然科学基金项目 52008401

    湖湘高层次人才聚集工程创新团队项目 2019RS1008

    湖南省自然科学基金项目 2021JJ40770

    中南大学研究生自主探索创新项目 2021zzts0761

    详细信息
      作者简介:

      叶新宇(1989— ),男,讲师,主要从事岩土工程方面的教学和科研工作。E-mail:yexinyu113@csu.edu.cn

      通讯作者:

      马新岩, E-mail:15011554119@163.com

    • 中图分类号: TU431

    Enhancement of compaction grouting on a compaction-grouted soil nail in sand

    • 摘要: 注浆压密效应是影响新型压密注浆土钉抗拔性能的一个重要因素。基于大型模型箱,开展了有压密效应和无压密效应的两组对比拉拔试验,研究了注浆压密效应对新型土钉性能的影响。另外,针对抗拔力随拉拔位移的演化规律,提出了抗拔力计算的双曲模型。研究表明:注浆压密效应对拉拔前期的抗拔力影响较大,而对最终抗拔力影响甚微。当土体条件发生变化时,注浆压密效应对抗拔力的影响取决于注浆压力,而非节泡直径。注浆压密效应引起的土体响应差异,其中包括垂直剪胀效应以及垂直和水平的挤压效应,是引起两种试验条件下抗拔力增加速率差异的根源。引入压缩模量和极限拉拔应力两个参数,建立的抗拔力计算双曲模型,可对新型压密注浆土钉的抗拔力进行有效计算。
      Abstract: The compaction grouting is an important factor in enhancing the performance of the newly developed compaction-grouted soil nail. Based on the self-developed large-scale model system, two series of pull-out tests with and without compaction grouting are carried out, and their results are compared to study the influences of compaction grouting on the enhancement of the pull-out force of the new soil nail. In addition, a hyperbolic model that can well describe the evolution of pull-out force with displacement is proposed. The study shows that: (1) The compaction grouting has significant influence on the pullout force within small pullout displacement, while it has small influence on the final pullout force. Moreover, when the soil conditions change, the compaction grouting (leading to soil densification) on the performance of soil nails depends on the grouting pressure rather than the diameter of the grout bulb. (2) The differences in soil responses caused by the compaction grouting, including vertical dilatation, the vertical and horizontal squeezing effects, are the main causes that lead to the difference in the increase rate of the pullout force of soil nails. (3) By introducing two parameters, the compression modulus and the ultimate pullout stress, a hyperbolic pullout model is proposed. After verification, the pullout forces can be calculated for the given diameter of grout bulb and pullout displacement.
    • 图  1   物理模型试验装置[15]

      Figure  1.   Setup of physical model test[15]

      图  2   本文中两组对比的土钉

      Figure  2.   Two comparative soil nails in this study

      图  3   土钉的安装

      Figure  3.   Installation of soil nails

      图  4   两组试验的抗拔力

      Figure  4.   Pullout force of two series of tests

      图  5   不同拉拔位移下的抗拔力之差

      Figure  5.   Difference in pullout forces at different pullout displacements

      图  6   不同注浆压力和饱和度时不同拉拔位移的抗拔力

      Figure  6.   Pullout forces at different pullout displacements under different grouting pressures and degrees of saturation

      图  7   注浆压力为800 kPa时竖向土压力变化

      Figure  7.   Variation of vertical soil pressure under grouting pressure of 800 kPa

      图  8   不同注浆压力下竖向土压力的增加

      Figure  8.   Increases of vertical soil pressure under different grouting pressures

      图  9   注浆压力为800 kPa时S6处的竖向土压力

      Figure  9.   Vertical soil pressure at S6 under grouting pressure of 800 kPa

      图  10   不同注浆压力下S6处竖向土压力的变化

      Figure  10.   Increase of vertical soil pressure at S6 under different grouting pressures

      图  11   注浆压力为800 kPa时S2-4处的水平土压力

      Figure  11.   Horizontal soil pressure at S2-4 under grouting pressure of 800 kPa

      图  12   不同注浆压力下S2和S4处水平土压力的变化

      Figure  12.   Increase of horizontal soil pressure at S2-4 under different grouting pressures

      图  13   土钉拉拔机理示意图

      Figure  13.   Schematic view of pullout mechanism of soil nails

      图  14   拉拔应力与拔出位移的双曲线关系

      Figure  14.   Hyperbolic relationship of pullout stress and displacement

      图  15   无压密效应试验的抗拔力计算与试验结果

      Figure  15.   Comparison of calculated and experimental pullout forces without grouting

      图  16   有压密效应试验的抗拔力计算和试验结果

      Figure  16.   Comparison of calculated and experimental pullout forces with grouting

      表  1   砂的矿物成分

      Table  1   Mineral compositions of sand

      矿物成分石英岩石碎片锆石钛铁矿金红石
      百分比98.82%0.8%0.21%0.11%0.06%
      下载: 导出CSV

      表  2   砂的级配特性

      Table  2   Grading properties of sand

      D60D50D30D10CuCc
      0.410.40.360.241.711.32
      下载: 导出CSV
    • [1] 张连震, 李志鹏, 刘人太, 等. 砂层劈裂-压密注浆模拟试验系统研发及试验[J]. 岩土工程学报, 2019, 41(4): 665-674.

      ZHANG Lian-zhen, LI Zhi-peng, LIU Ren-tai, et al. Simulation tests on fracture-compaction grouting process in sand layer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 665-674. (in Chinese)

      [2] 韩文君, 刘松玉, 章定文, 等. 压力控制的圆孔扩张数值模拟分析[J]. 岩土力学, 2010, 31(增刊1): 405-411. doi: 10.16285/j.rsm.2010.s1.035

      HAN Wen-jun, LIU Song-yu, ZHANG Ding-wen, et al. Numerical simulation of pressure-controlled cavity expansion[J]. Rock and Soil Mechanics, 2010, 31(S1): 405-411. (in Chinese) doi: 10.16285/j.rsm.2010.s1.035

      [3] 张忠苗, 邹健, 何景愈, 等. 考虑压滤效应下饱和黏土压密注浆柱扩张理论[J]. 浙江大学学报(工学版), 2011, 45(11): 1980-1984. doi: 10.3785/j.issn.1008-973X.2011.11.015

      ZHANG Zhong-miao, ZOU Jian, HE Jing-yu, et al. Cavity expansion theory of compaction grouting in saturated clay considering pressure filtration[J]. Journal of Zhejiang University(Engineering Science), 2011, 45(11): 1980-1984. (in Chinese) doi: 10.3785/j.issn.1008-973X.2011.11.015

      [4] 蒋邵轩, 钱玉林, 刘译文, 等. 压密注浆圆孔扩张的数值分析[J]. 吉林建筑大学学报, 2018, 35(1): 31-35. doi: 10.3969/j.issn.1009-0185.2018.01.007

      JIANG Shao-xuan, QIAN Yu-lin, LIU Yi-wen, et al. Numerical analysis of hole expansion in compaction grouting[J]. Journal of Jilin Jianzhu University, 2018, 35(1): 31-35. (in Chinese) doi: 10.3969/j.issn.1009-0185.2018.01.007

      [5]

      WANG S Y, CHAN D H, LAM K C, et al. A new laboratory apparatus for studying dynamic compaction grouting into granular soils[J]. Soils and Foundations, 2013, 53(3): 462-468. doi: 10.1016/j.sandf.2013.04.007

      [6]

      LI H J, LIU S Y, TONG L Y, et al. Investigating the resonance compaction effect on laterally loaded piles in layered soil[J]. Engineering Geology, 2018, 246: 1-11. doi: 10.1016/j.enggeo.2018.09.019

      [7] 邱伟健, 杨和平, 贺迎喜, 等. 珊瑚礁砂作地基吹填料及振冲加固试验研究[J]. 岩土工程学报, 2017, 39(8): 1517-1523. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708025.htm

      QIU Wei-jian, YANG He-ping, HE Ying-xi, et al. Experimental study on coral reef sand as hydraulic filling materials for foundation and its vibroflotation compaction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1517-1523. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708025.htm

      [8] 戴国亮, 万志辉, 龚维明, 等. 基于沉降控制的组合后压浆灌注桩承载力计算研究[J]. 岩土工程学报, 2018, 40(12): 2172-2181. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201812004.htm

      DAI Guo-liang, WAN Zhi-hui, GONG Wei-ming, et al. Calculation of bearing capacity for combined post-grouting bored piles based on settlement control[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2172-2181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201812004.htm

      [9]

      YE X Y, WANG Q, WANG S Y, et al. Performance of a compaction-grouted soil nail in laboratory tests[J]. Acta Geotechnica, 2019, 14(4): 1049-1063. doi: 10.1007/s11440-018-0693-y

      [10]

      ZHOU J J, GONG X N, WANG K H, et al. Testing and modeling the behavior of pre-bored grouting planted piles under compression and tension[J]. Acta Geotechnica, 2017, 12(5): 1061-1075. doi: 10.1007/s11440-017-0540-6

      [11]

      WAN Z H, DAI G L, GONG W M. Field study on post-grouting effects of cast-in-place bored piles in extra-thick fine sand layers[J]. Acta Geotechnica, 2019, 14(5): 1357-1377. doi: 10.1007/s11440-018-0741-7

      [12] 张旭辉, 吴欣, 俞建霖, 等. 浆囊袋压力型土钉新技术及工作机理研究[J]. 岩土工程学报, 2014, 36(增刊2): 227-232. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2014S2040.htm

      ZHANG Xu-hui, WU Xin, YU Jian-lin, et al. New slurry pressure type soil-nailing technology and its working mechanism[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 227-232. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2014S2040.htm

      [13]

      AJALLOEIAN R, YU H, ALLMAN M. Physical and mechanical properties of Stockton beach sand[C]//Institution of Engineers, 1996, Australia.

      [14]

      YE X Y, WANG S Y, WANG Q, et al. The influence of the degree of saturation on compaction-grouted soil nails in sand[J]. Acta Geotechnica, 2019, 14(4): 1101-1111. doi: 10.1007/s11440-018-0706-x

      [15]

      YE X Y, WANG S Y, ZHANG S, et al. The compaction effect on the performance of a compaction-grouted soil nail in sand[J]. Acta Geotechnica, 2020, 15(10): 2983-2995. doi: 10.1007/s11440-020-01017-4

      [16]

      WANG Q, YE X Y, WANG S Y, et al. Use of photo-based 3D photogrammetry in analysing the results of laboratory pressure grouting tests[J]. Acta Geotechnica, 2018, 13(5): 1129-1140. doi: 10.1007/s11440-017-0597-2

      [17]

      HAREHDASHT S A, HUSSIEN M N, KARRAY M, et al. Influence of particle size and gradation on shear strength-dilation relation of granular materials[J]. Canadian Geotechnical Journal, 2019, 56: 208-227.

      [18]

      SU L J, CHAN T C F, YIN J H, et al. Influence of overburden pressure on soil nail pull-out resistance in a compacted fill[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9): 1339-1347.

      [19]

      YIN J H, ZHOU W H. Influence of grouting pressure and overburden stress on the interface resistance of a soil nail[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(9): 1198-1208.

      [20]

      NG C W W, ZHOU R Z B. Effects of soil suction on dilatancy of an unsaturated soil[C]//Proc 16th Int Conf Soil Mech Geotech Engng, 2005, Osaka.

      [21]

      HOSSAIN M A, YIN J H. Dilatancy and strength of an unsaturated soil-cement interface in direct shear tests[J]. International Journal of Geomechanics, 2015, 15(5): 04014081.

      [22]

      SCHLOSSER F. Behaviour and design of soil nailing[C]//Proceedings of the International Sumposium, 1985, Bangkok.

      [23]

      YIN J H, SU L J, CHEUNG R W M, et al. The influence of grouting pressure on the pullout resistance of soil nails in compacted completely decomposed granite fill[J]. Géotechnique, 2008, 59(2): 103-113.

      [24]

      WANG Q, YE X Y, WANG S Y, et al. Experimental investigation of compaction-grouted soil nails[J]. Canadian Geotechnical Journal, 2017, 54(12): 1728-1738.

      [25] 张旭辉, 吴欣, 俞建霖, 等. 浆囊袋压力型土钉新技术及工作机理研究[J]. 岩土工程学报, 2014, 36(S2): 227-232. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2014S2040.htm

      ZHANG Xu-hui, WU Xin, YU Jian-lin, et al. New slurry pressure type soil-nailing technology and its working mechanism[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 227-232. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2014S2040.htm

      [26]

      ZHU H H, YIN J H, YEUNG A T, et al. Field pullout testing and performance evaluation of GFRP soil nails[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(7): 633-642.

      [27]

      YE X Y, WANG S Y, WANG Q, et al. Numerical and experimental studies of the mechanical behaviour for compaction-grouted soil nails in sandy soil[J]. Computers and Geotechnics, 2017, 90: 202-214.

      [28]

      YE X Y, WANG S Y, XIAO X, et al. Numerical study for compaction-grouted soil nails with multiple grout bulbs[J]. International Journal of Geomechanics, 2019, 19(2): 04018193.

    • 期刊类型引用(8)

      1. 王彤彤,刘文龙,曹立雪,秦哲,张润昌. 浅埋隧道预应力锚固体承载效应模型实验研究. 矿业科学学报. 2024(03): 370-380 . 百度学术
      2. 李煜,张升,叶新宇,刘玮,时一帆,李柔锋,田奔. 不同注浆工艺下土钉的现场拉拔试验. 中南大学学报(自然科学版). 2024(07): 2690-2700 . 百度学术
      3. 陈昌富,李伟,朱世民,陈轶龙. 基于黏弹-塑性圆孔扩张理论压力注浆锚杆锚-土界面黏结强度计算方法. 中国公路学报. 2023(02): 41-51 . 百度学术
      4. 王永刚,尉敏,王江,董耀斌,车志远,魏彬,杨御博,王志丰. 涨壳式预应力中空锚杆支护效果及注浆工艺改进研究. 建筑科学与工程学报. 2023(03): 142-151 . 百度学术
      5. 张根宝,何仕林,陈昌富,徐长节,毛凤山. 基于离散元的GFRP筋-水泥土界面黏结特性分析. 工程地质学报. 2023(06): 2115-2124 . 百度学术
      6. 张升,彭锐,叶新宇,李煜,刘蔚. 土工织物应用于新型压密注浆土钉的试验研究. 岩土工程学报. 2022(09): 1733-1740 . 本站查看
      7. 秦永军,胡晓波,王光齐,何昭宇,范世英. 注浆钢花管加固技术在医院扩建工程深基坑的应用研究. 建筑结构. 2022(S2): 1837-1844 . 百度学术
      8. 赵军,陈志鹏,高敏. 岩体单一裂隙动水注浆数值模拟研究. 安徽理工大学学报(自然科学版). 2022(06): 37-42 . 百度学术

      其他类型引用(7)

    图(16)  /  表(2)
    计量
    • 文章访问数:  304
    • HTML全文浏览量:  32
    • PDF下载量:  156
    • 被引次数: 15
    出版历程
    • 收稿日期:  2020-06-09
    • 网络出版日期:  2022-12-02
    • 刊出日期:  2021-08-31

    目录

      /

      返回文章
      返回