Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

压实宽级配黏土与刚性面结合带抗渗特性研究

邓刚, 张茵琪, 张延亿, 湛正刚, 杨家修, 卢吉, 曹学兴

邓刚, 张茵琪, 张延亿, 湛正刚, 杨家修, 卢吉, 曹学兴. 压实宽级配黏土与刚性面结合带抗渗特性研究[J]. 岩土工程学报, 2021, 43(9): 1631-1639. DOI: 10.11779/CJGE202109007
引用本文: 邓刚, 张茵琪, 张延亿, 湛正刚, 杨家修, 卢吉, 曹学兴. 压实宽级配黏土与刚性面结合带抗渗特性研究[J]. 岩土工程学报, 2021, 43(9): 1631-1639. DOI: 10.11779/CJGE202109007
DENG Gang, ZHANG Yin-qi, ZHANG Yan-yi, ZHAN Zheng-gang, YANG Jia-xiu, LU Ji, CAO Xue-xing. Impermeability characteristics of junctional zone between compacted broadly graded clayey soil and hard surface[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1631-1639. DOI: 10.11779/CJGE202109007
Citation: DENG Gang, ZHANG Yin-qi, ZHANG Yan-yi, ZHAN Zheng-gang, YANG Jia-xiu, LU Ji, CAO Xue-xing. Impermeability characteristics of junctional zone between compacted broadly graded clayey soil and hard surface[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1631-1639. DOI: 10.11779/CJGE202109007

压实宽级配黏土与刚性面结合带抗渗特性研究  English Version

基金项目: 

国家重点研发计划课题 2017YFC0404803

中国水科院基本科研业务费专项 GE0145B562017

贵州省高层次创新人才项目 〔2018〕5630

流域水循环模拟与调控国家重点实验室自主研究课题 SKL2020ZY09

华能集团总部科技项目 HNKJ17-H18

详细信息
    作者简介:

    邓刚(1979— )男,正高级工程师,主要从事岩土材料特性和数值模拟等方面研究。E-mail:dgang@iwhr.com

  • 中图分类号: TU431

Impermeability characteristics of junctional zone between compacted broadly graded clayey soil and hard surface

  • 摘要: 研发了土料与刚性面结合带在相互正交、独立可控的压应力、剪切变形和水力比降作用下抗渗性能试验的大型和中型设备,最大剪切变形量值大于1 m。对压实天然宽级配黏土开展了结合带抗渗特性试验研究,发现了试样渗透系数随剪切变形突然增大后逐步减小并稳定的变化规律,剪切变形启停历史会弱化结合带渗透系数随剪切变形启动而突然增大的现象,初始密度高、应力高、试样尺寸大的土样渗透系数更低。考虑结合带导水系数与初始值的比值和试样渗透系数与初始值的比值之间的关系,分析渗透系数剪切后达峰值时结合带厚度在0.075~1.0 mm之间,结合带厚度随正应力减小、随试样尺寸增大而增厚。提出改进的黏土颗粒不规则形状集簇模型,通过组构变化较好解释了剪切过程中渗透性持续演化的机理,也支撑了结合带厚度的分析结论。
    Abstract: Large-scale and medium-scale test equipments for impermeability characteristics of junctional zone between soil and hard surface are developed. The mutually orthogonal compressive stress, shear deformation and hydraulic gradient of the junctional zone between the soil and the rigid surface are controllable independently. The maximum shear deformation is greater than 1 m. The experimental studies on a compacted natural broadly graded clayey soil are carried out. The variation law of the permeability coefficient of the samples is discovered, that the permeability coefficient decreases gradually and then becomes stable after the sudden increase along with the start of the shear deformation. The history of shear deformation may weaken the phenomenon of the sudden increase of the permeability coefficient after the start of shear deformation. The permeability coefficient of soil samples with higher initial density, higher stress and larger external size is lower. Based on the corresponding relationship between the ratio of water conductivity coefficient of the junctional zone to its initial value and the ratio of permeability coefficient of the sample to its initial value, the possible thickness of the junctional zone considered to be between 0.075 mm and 1.0 mm is analyzed when the peak value of permeability coefficient is achieved. A revised model for clay particle clusters with irregular shape is proposed. The continuous change mechanism of permeability during shear deformation can be explained by fabric adjustment. The conjecture of the thickness of the junctional zone is also supported.
  • 图  1   岸坡坝段心墙底部与岸坡刚性面结合带工作状态

    Figure  1.   Working condition of junctional zone between earth core and hard surface of abutment

    图  2   试验装置主机外观和布置

    Figure  2.   Appearance and arrangement of test equipments

    图  3   试验原理

    Figure  3.   Working principle of experiment

    图  4   土样中初始直线布置的颜色标记在试验后保持直线

    Figure  4.   Coloring marks initially arranged in straight line in soil sample keep straight after tests

    图  5   试验土料级配曲线

    Figure  5.   Grain-size distribution curve of test soil

    图  6   各方案渗透特性演化情况对比

    Figure  6.   Comparison of evolution of permeability coefficient for each scheme

    图  7   剪切变形过程中的渗透性变化模式(方案T01)

    Figure  7.   Change pattern of permeability during deformation process (Scheme T01)

    图  8   剪切变形过程中的渗透性变化模式(方案T05)

    Figure  8.   Change pattern of permeability during deformation process (Scheme T05)

    图  9   剪切变形过程中的渗透性变化模式(方案T06)

    Figure  9.   Change pattern of permeability during deformation process (Scheme T06)

    图  10   不同剪切变形下的试样渗透系数对比

    Figure  10.   Comparison of permeability coefficients of samples at different shearing deformations

    图  11   用于渗透性分析的不规则形状颗粒集簇模型

    Figure  11.   Cluster model for permeability analysis

    图  12   剪切过程中的结合带组构变化

    Figure  12.   Change of fabric in junctional zone during shearing process

    表  1   试验土料基本物理性质

    Table  1   Physical properties of test soil

    Gs 液限wL /%塑限wP /%塑性指数IP 最优含水率wOP/%最大干密度ρmax /(g·cm-3)
    2.7034.021.013.013.71.88
    下载: 导出CSV

    表  2   试验方案

    Table  2   Test schemes

    方案编号土样外径/mm干密度/(g·cm-3)结合面正应力/kPa水力比降剪切速率/(mm·d-1)剪切变形及停顿点/mm
    T011001.8850302000-500-1000
    T021001.883502002000-500-1000
    T031001.887005002000-500-1000
    T041001.887005004000-500-1000
    T051001.887005002000-200-500-800-1000
    T061001.887005002000-1000
    T071001.6950302000-500-1000
    T081001.693502002000-500-1000
    T091001.697005002000-500-1000
    T107001.88350662000-500-1000
    T117001.887001662000-500-1000
    下载: 导出CSV
  • [1] 邓刚, 丁勇, 张延亿, 等. 土质心墙土石坝沿革及体型和材料发展历程的回顾[J]. 中国水利水电科学研究院学报, 2021, 19(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX202104006.htm

    DENG Gang, DING Yong, ZHANG Yan-yi, et al. Evolution of earth core embankment dams along with the development of configuration and material[J]. Journal of China Institute of Water Resources and Hydropower Research, 2021, 19(2): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX202104006.htm

    [2]

    KJAERNSLI B, TORBLAA I. Compaction of moraine in three feet layers[C]//Proceeding of the 7th International Congress on Large Dams, 1961, Rome.

    [3]

    ASAO I. The Miboro Dam[C]//Proceeding of the 8th International Congress on Large Dams, 1964, Edinbergh.

    [4]

    COOKE J B. Design Methods of Construction and Performance of High Rockfill Dams (above or about 80 m)[C]//Proceeding of the 8th International Congress on Large Dams, 1964, Edinburgh.

    [5]

    ALBERRO J, MORENO E. Interaction phenomena in the Chicoasén dam: Construction and first filling[C]//Proceeding of the 14th International Congress on Large Dams, 1982, Rio De Janeiro.

    [6] 邓刚, 韩巍巍, 温彦锋, 等. Hyttejuvet坝突然渗漏事故的回顾和心墙堆石坝水力劈裂的反思[C]//土石坝技术2012年论文集, 2012, 北京.

    DENG Gang, HAN Wei-wei, WEN Yan-feng, et al. A review of the sudden leakage of hyttejuvet dam and a reflection on the hydraulic fracturing of the earth core rockfill dams[C]//Proceeding of the Symposium on Technology of Earth-Rockfill Dam Rockfill Dams, 2012, Beijing. (in Chinese)

    [7] 邓刚, 皇甫泽华, 武颖利, 等. 土质心墙土石坝变形协调控制发展与展望[J]. 水力发电学报, 2020, 39(5): 1-16.

    DENG Gang, HUANGFU Ze-hua, WU Yin-li, et al. Development and prospect of deformation compatibility control of earth core embankment dams[J]. Journal of Hydroelectric Engineering, 2020, 39(5): 1-16. (in Chinese)

    [8] 邓刚, 陈辉, 张茵琪, 等. 基于坝壳湿化过程数值模拟的心墙坝初蓄水力劈裂机理研究[J]. 中国水利水电科学研究院学报, 2021, 19(1): 90-98. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX202101012.htm

    DENG Gang, CHEN Hui, ZHANG Yin-qi, et al. Study on mechanism of hydraulic fracture of earth core embankment dam during first filling based on the numerical simulation of wetting deformation development with time of coarse aggregate[J]. Journal of China Institute of Water Resources and Hydropower Research, 2021, 19(1): 90-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX202101012.htm

    [9]

    DEWHURST D N, CLENNELL M B, BROWN K M, et al. Fabric and hydraulic conductivity of sheared clays[J]. Géotechnique, 1996, 46(4): 761-768. doi: 10.1680/geot.1996.46.4.761

    [10]

    DEWHURST D N, BROWN K M, CLENNELL M B, et al. A comparison of the fabric and permeability anistrophy of consolidated and sheared silty clay[J]. Engineering Geology, 1996, 42(4): 253-267. doi: 10.1016/0013-7952(95)00089-5

    [11]

    ZHANG S Q, TERRY E T. The effect of fault slip on permeability and permeability anisotropy in quartz gouge[J]. Tectonophysics, 1998, 295: 41-52. doi: 10.1016/S0040-1951(98)00114-0

    [12]

    KIMURA S, KANEKO H, ITO T, et al. Investigation of fault permeability in sands with different mineral compositions (evaluation of gas hydrate reservoir)[J]. Energies, 2015, 8: 7202-7223. doi: 10.3390/en8077202

    [13]

    IMURA S, KANEKO H, NODA S, et al. Shear-induced permeability reduction and shear-zone development of sand under high vertical stress[J]. Engineering Geology, 2018, 238: 86-98. doi: 10.1016/j.enggeo.2018.02.018

    [14]

    WANG G, WEI X, ZOU T. A hollow cylinder radial-seepage apparatus for evaluating permeability of sheared compacted clay[J]. Geotechnical Testing Journal, 2019, 42(5): 1133-1149.

    [15] 魏星, 邹婷, 王刚. 压-剪耦合条件下黏土渗透特性的试验研究.[J]. 岩石力学与工程学报, 2017, 36(增刊1): 3561-3568. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1050.htm

    WEI Xing, ZOU Ting, WANG Gang. Experimental study on permeability of clay during coupled compression and shear[J]. Chinese Journal of Rock Mechanics and Geotechnical Engineering, 2017, 36(S1): 3561-3568. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1050.htm

    [16] 王刚, 游克勤, 魏星, 等. 压实黏土剪切带渗透特性试验研究[J]. 岩土工程学报, 2019, 41(8): 1530-1537.

    WANG Gang, YOU Ke-qin, WEI Xing, et al. Experimental study on permeability of shear bands in compacted clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1530-1537. (in Chinese)

    [17] 雷红军, 卞锋, 于玉贞, 等. 黏土大剪切变形中的渗透特性试验研究[J]. 岩土力学, 2010, 31(4): 1130-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201004025.htm

    LEI Hong-jun, BIAN Feng, YU Yu-zhen, et al. Experimental study of permeability of clayey soil during process of large shear deformation[J]. Rock and Soil Mechanics, 2010, 31(4): 1130-1133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201004025.htm

    [18]

    LEI H J, WU Y K, YU Y Z, et al. Influence of shear on permeability of clayey soil[J]. International Journal of Geomechanics, 2016, 16(5): 04016010

    [19]

    LIU Q H, WU Y K, LI Q M, et al. Modified model for hydraulic conductivity of clayey soil under shear[J]. International Journal of Geomechanics, 2019, 19(11): 06019015.

    [20] 王刚, 韦林邑, 魏星, 等. 压实黏土三轴压缩变形过程中的渗透性变化规律[J]. 岩土力学, 2020, 41(1): 32-38.

    WANG Gang, WEI Lin-yi, WEI Xing, et al. Permeability evolution of compacted clay during triaxial compression[J]. Rock and Soil Mechanics, 2020, 41(1): 32-38. (in Chinese)

    [21] 雷红军, 刘中阁, 于玉贞, 等. 黏土-结构接触面大剪切变形后渗流特性试验研究[J]. 岩土力学, 2011, 32(4): 1040-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201104013.htm

    LEI Hong-jun, LIU Zhong-ge, YU Yu-zhen, et al. Experimental study of seepage characteristics of clayey soil-structure interface under large shear deformation[J]. Rock and Soil Mechanics, 2011, 32(4): 1040-1044. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201104013.htm

    [22]

    LUO Y L, JIN X, LI X, et al. A new apparatus for evaluation of contact erosion at the soil-structure interface[J]. Geotechnical Testing Journal, 2013, 36(2): 256-263.

    [23] 邓刚, 湛正刚, 张幸幸, 等. 一种旋转剪切式接触面抗渗特性试验装置:中国,201610305992.8[P]. 2019-01-25.

    DENG Gang, ZHAN Zheng-gang, ZHANG Xing-xing, et al. The invention discloses a rotary shear type test device for impermeability of contact surface: China, 201610305992.8[P]. 2019-01-25. (in Chinese)

    [24] 邓刚, 湛正刚, 张茵琪, 等. 一种模拟接触面渗流耦合特性的试验装置及试验方法: CN111912760A[P]. 2020-11-10.

    DENG Gang, ZHAN Zheng-gang, ZHANG Yin-qi, et al. The invention relates to a test device and a test method for simulating the seepage coupling characteristics of contact surfaces: CN111912760A[P]. 2020-11-10. (in Chinese)

    [25]

    COLLINS K, MCGOWN A. The form and function of microfabric features in a variety of natural soils[J]. Géotechnique, 1974, 24(2): 223-254.

    [26]

    MITCHELL J K, SOGA K. Fundamental of soil behavior[M]. 3rd ed. New Jersey: John Wiley and Sons, 2005.

    [27]

    OLSEN H W. Hydraulic flow through saturated clay[C]//Proceedings of the Ninth National Conference on Clays and Clay Minerals, 1962, West Lafayette.

    [28]

    DELAGE P, LEFEBVRE G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21-35.

    [29]

    MORGENSTERN N R, TCHALENKO J S. Microscopic structures in Kaolin subjected to direct shear[J]. Géotechnique, 1967, 17: 309-328.

  • 期刊类型引用(3)

    1. 吴涵,郭宇,兰安栋,杨秀娟. 木质素磺酸钙对Pb~(2+)污染土固化效果的研究. 四川水泥. 2022(04): 54-56+59 . 百度学术
    2. 谈家诚,沈振中,张宏伟,徐力群,李国辉. 考虑黏土–结构接触变形的剪切–渗流耦合试验. 岩土工程学报. 2022(09): 1679-1688 . 本站查看
    3. 张茵琪,邓刚,张延亿,卢吉,曹学兴. 宽级配黏土与混凝土结合带渗透特性试验研究. 水利水电技术(中英文). 2021(10): 182-190 . 百度学术

    其他类型引用(0)

图(12)  /  表(2)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  21
  • PDF下载量:  108
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-03-14
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回