• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

裂缝边坡三维极限上限拓展分析

饶平平, 吴健, 崔纪飞, 赵琳学

饶平平, 吴健, 崔纪飞, 赵琳学. 裂缝边坡三维极限上限拓展分析[J]. 岩土工程学报, 2021, 43(9): 1612-1620. DOI: 10.11779/CJGE202109005
引用本文: 饶平平, 吴健, 崔纪飞, 赵琳学. 裂缝边坡三维极限上限拓展分析[J]. 岩土工程学报, 2021, 43(9): 1612-1620. DOI: 10.11779/CJGE202109005
RAO Ping-ping, WU Jian, CUI Ji-fei, ZHAO Lin-xue. Extended three-dimensional analysis of cracked slopes using upper-bound limit method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1612-1620. DOI: 10.11779/CJGE202109005
Citation: RAO Ping-ping, WU Jian, CUI Ji-fei, ZHAO Lin-xue. Extended three-dimensional analysis of cracked slopes using upper-bound limit method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1612-1620. DOI: 10.11779/CJGE202109005

裂缝边坡三维极限上限拓展分析  English Version

基金项目: 

国家自然科学基金项目 42077435

详细信息
    作者简介:

    饶平平(1984— ),男,博士,副教授,主要从事岩土力学教学与科研工作。E-mail:raopingping@usst.edu.cn

  • 中图分类号: TU431

Extended three-dimensional analysis of cracked slopes using upper-bound limit method

  • 摘要: 裂缝的存在会降低边坡稳定性,而在边坡宽度受到限制时三维效应更加显著,因此有必要对裂缝边坡稳定性进行评估。针对裂缝边坡三维稳定性研究,基于极限分析上限定理,在三维破坏机构中引入一条垂直张拉裂缝,并引进机构参数拓展裂缝边坡三维破坏模式,包括坡面破坏和坡底破坏,建立能量平衡方程并通过优化算法求解裂缝边坡稳定系数上限解。根据g-line图像法绘制裂缝边坡稳定性图表以便读取安全系数。分析了边坡宽高比、坡角以及土体内摩擦角对裂缝边坡破坏模式和裂缝深度及位置的影响规律。结果表明:对于确定的边坡几何形态以及土体参数,存在最小边坡宽高比B/H*,当边坡宽高比小于B/H*,边坡发生坡面破坏且坡顶裂缝的影响可以忽略;内摩擦角φ小于5°时,边坡发生坡底破坏,而对于裂缝边坡,仅在φ=1°左右发生坡底破坏;随着边坡宽高比的增大,裂缝深度逐渐增加,裂缝位置逐渐远离坡肩,但对于坡角为75°的边坡裂缝深度先增大后减小。
    Abstract: The existence of cracks will reduce the stability of a slope and the three-dimensional effect is more significant when its width is limited. Therefore, it is necessary to evaluate the stability of cracked slopes. In order to study the three-dimensional stability of cracked slopes, based on the upper-bound theorem of limit analysis, a vertical tensile crack is introduced into the three-dimensional failure mechanism, and the mechanism parameters are introduced to extend the three-dimensional failure mode of slopes, including face failure and base failure. The energy balance equation is established, and the upper bounds of stability number of cracked slopes are obtained by the optimization algorithm. The stability charts of cracked slopes are established based on the g-line graphical method to read the factor of safety conveniently. The influences of slope width-to-height ratio, slope angle and internal friction angle of soils on the failure mechanism of cracked slopes and the crack depth and location are analyzed. The results show that for the specific slope geometry and soil parameters, there is a minimum slope width B/H*. When the slope width is less than B/H*, the failure surface passes above the slope toe, and the influences of the crack on the upper surface of the slope can be ignored. When the internal friction angle φ is less than 5°, the failure surface passes below the slope toe; for the cracked slope, only when φ=1°, failure surface passes below the slope. As the width of the slope increases, the crack depth gradually increases, and the crack location gradually moves away from the slope crest, while the crack depth of the slope with inclination 75° increases first and then decreases.
  • 图  1   裂缝边坡三维旋转破坏机构

    Figure  1.   Three-dimensional failure mechanism of cracked slopes

    图  2   裂缝边坡三维旋转破坏拓展机构

    Figure  2.   Extended three-dimensional failure mechanism of cracked slopes

    图  3   平面应变机制插入示意图

    Figure  3.   Schematic diagram of insert portion of plane-strain mechanism

    图  4   读取安全系数示意图

    Figure  4.   Schematic diagram of reading factor of safety

    图  5   几何约束对三维破坏机构的影响

    Figure  5.   Influences of geometric constraints on 3D failure mechanism

    图  6   不考虑坡顶裂缝情况下边坡三维稳定性图表

    Figure  6.   Stability charts of 3D slopes without cracks on upper surface

    图  7   考虑坡顶裂缝情况下边坡三维稳定性图表

    Figure  7.   Stability charts of 3D slopes with cracks on upper surface

    图  8   边坡宽度对三维破坏机构的影响

    Figure  8.   Influences of slope width on 3D failure mechanism

    图  9   三维效应下边坡坡角对裂缝深度的影响

    Figure  9.   Influences of slope inclination on crack depth under 3D condition

    图  10   三维效应对裂缝深度的影响

    Figure  10.   Influences of three-dimensional effects on crack depth

    表  1   不考虑坡顶裂缝情况下三维边坡稳定系数对比

    Table  1   Comparison of 3D stability factors of slopes without cracks

    β/(°) φ/(°) B/H θ 0/(°) θ h/(°) r 0′/r0γH/c
    本文解答文献[19]解答文献[20]解答
    30150.553.6997.250.94173.106a73.156a73.120a
    45150.530.3989.540.88832.184a32.371a32.198a
     300.857.2795.340.85662.12162.21362.121
    60150.514.4380.140.84320.889a21.512a20.805a
     300.842.1487.180.73926.46426.48626.464
    注:a坡面破坏。
    下载: 导出CSV

    表  2   考虑坡顶裂缝情况下三维边坡稳定系数对比

    Table  2   Comparison of 3D stability factors of slopes with cracks

    β/(°) φ/(°) B/H γH/c
    本文解答文献[17]解答
    30100.828.0027.74
     203.047.8147.75
    45100.815.8215.68
     203.017.5417.53
    60100.811.1511.07
     203.010.6010.59
    70100.88.338.26
     203.07.027.01
    下载: 导出CSV

    表  3   边坡稳定系数(φ=15°)

    Table  3   Stability factors of slopes (φ=15°)

    B/H β/(°)
    30456075
    γH/cδ/Hx/HγH/cδ/Hx/HγH/cδ/Hx/HγH/cδ/Hx/H
    0.5PC73.155a0.0030.04331.978a0.1260.04119.903a0.3310.04114.085a0.4770.070
    IN73.106a32.184a20.889a15.834a
    0.6PC61.199a0.0150.07526.6850.1450.04316.6700.3890.05711.7130.5990.082
    IN61.002a26.72517.48213.322
    0.8PC46.0510.0210.10720.9130.1860.11113.5240.3920.1179.5980.5870.126
    IN46.07121.22014.30610.936
    1.0PC38.6980.0460.12318.2300.2110.13611.9650.3860.1488.5050.5710.150
    IN38.79518.64812.7869.797
    1.5PC30.8740.0840.14515.2980.2340.17310.1900.3820.1867.2170.5530.182
    IN31.12615.85511.0878.503
    3.0PC25.1240.1140.17012.9940.2480.2078.7220.3790.2206.1110.5390.211
    IN25.54013.6869.7147.433
    注:a坡面破坏;PC考虑坡顶存在裂缝情况;IN考虑坡顶无裂缝情况;x/H裂缝位置与坡肩B的距离。
    下载: 导出CSV

    表  4   边坡稳定系数(φ=30°)

    Table  4   Stability factors of slopes (φ=30°)

    B/H β/(°)
    456075
    γH/cδ/Hx/HγH/cδ/Hx/HγH/cδ/Hx/H
    0.5PC96.560a0.0010.04040.219a0.1250.04123.673a0.3890.029
    IN96.417a40.590a25.446a
    0.6PC80.718a0.0210.06133.511a0.1870.04219.361a0.5520.016
    IN80.287a33.935a21.226a
    0.8PC61.9780.0450.06725.8820.2630.06115.1370.5230.081
    IN62.12126.46416.534
    1.0PC53.7240.0680.06922.6440.2500.09213.2610.4910.107
    IN54.06623.39814.647
    1.5PC45.2430.0880.07619.2600.2510.11511.1860.4660.134
    IN45.83620.21612.652
    3.0PC39.0610.0980.08416.6770.2520.1329.5160.4520.156
    IN39.86417.83011.120
    注:a坡面破坏;PC考虑坡顶存在裂缝情况;IN考虑坡顶无裂缝情况;x/H裂缝位置与坡肩B的距离。
    下载: 导出CSV
  • [1] 陈祖煜. 土质边坡稳定分析:原理·方法·程序[M]. 北京: 中国水利水电出版社, 2003.

    CHEN Zu-yu. Soil Slope Stability Analysis[M]. Beijing: China Water Power Press, 2003. (in Chinese)

    [2] 陈曦, 刘春杰. 有限元强度折减法中安全系数的搜索算法[J]. 岩土工程学报, 2010, 32(9): 1443-1447. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201009028.htm

    CHEN Xi, LIU Chun-jie. Search algorithms for safety factor in finite element shear strength reduction method[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1443-1447. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201009028.htm

    [3]

    DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2): 157-165. doi: 10.1090/qam/48291

    [4] 刘锋, 芮勇勤, 张春. 坡顶张拉裂缝对边坡稳定性影响[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(9): 949-954. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201609010.htm

    LIU Feng, RUI Yong-qin, ZHANG Chun. Influence of tension cracks of slope crest on the stability of slope[J]. Journal of Liaoning Technical University (Natural Science), 2016, 35(9): 945-954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201609010.htm

    [5] 秦会来, 周予启, 黄茂松, 等. 基于上限理论的预留土支护基坑极限抗力分析[J]. 岩土工程学报, 2020, 42(6): 1101-1107. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006017.htm

    QIN Hui-lai, ZHOU Yu-qi, HUANG Mao-song, et al. Passive earth pressure analysis of berm-retained excavation by upper bound method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1101-1107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006017.htm

    [6] 吴梦喜, 杨家修, 湛正刚. 边坡稳定分析的虚功率法[J]. 力学学报, 2020, 52(3): 663-672. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202003007.htm

    WU Meng-xi, YANG Jia-xiu, ZHAN Zheng-gang. A virtual power slope stability analysis method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 663-672. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202003007.htm

    [7]

    CHEN W F. Limit Analysis and Soil Plasticity[M]. Amsterdam: Elsevier Science, 1975.

    [8]

    TERZAGHI K. Theoretical Soil Mechanics[M]. New York: Wiley, 1943.

    [9]

    SPENCER E. A method of analysis of the stability of embankments assuming parallel inter-slice forces[J]. Géotechnique, 1967, 17(1): 11-26. doi: 10.1680/geot.1967.17.1.11

    [10]

    COUSINS B F. Stability charts for simple earth slopes allowing for tension cracks[C]//Proceedings of the Third Australia-New Zealand Conference on Geomechanics, 1980, Wellington.

    [11]

    MICHALOWSKI R L. Stability assessment of slopes with cracks using limit analysis[J]. Canadian Geotechnical Journal, 2013, 50(10): 1011-1021. doi: 10.1139/cgj-2012-0448

    [12]

    UTILI S. Investigation by limit analysis on the stability of slopes with cracks[J]. Géotechnique, 2013, 63(2): 140-154. doi: 10.1680/geot.11.P.068

    [13]

    ZHAO L H, CHENG X, ZHANG Y, et al. Stability analysis of seismic slopes with cracks[J]. Computers and Geotechnics, 2016, 77: 77-90. doi: 10.1016/j.compgeo.2016.04.007

    [14] 何毅, 余军炎, 袁冉, 等. 考虑坡顶倾角的土质裂隙边坡稳定性分析[J]. 中国公路学报, 2021, 34(5): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105005.htm

    HE Yi, YU Jun-yan, YUAN Ran, et al. Stability analysis of soil slope with cracks considering upper slope inclination angle[J]. China Jouranl of Highway and Transport, 2021, 34(5): 45-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105005.htm

    [15] 周志军, 朱林楦, 陈磊. 倾斜坡顶黄土边坡垂直裂隙深度计算方法[J]. 中国公路学报, 2021, 34(5): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105004.htm

    ZHOU Zhi-jun, ZHU Lin-xuan, CHEN Lei. Calculation method of vertical crack depth of loess slope with inclined crest[J]. China Journal of Highway and Transport, 2021, 34(5): 37-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202105004.htm

    [16]

    MICHALOWSKI R L, DRESCHER A. Three-dimensional stability of slopes and excavations[J]. Géotechnique, 2009, 59(10): 839-850.

    [17]

    HE Y, LIU Y, ZHANG Y, et al. Stability assessment of three-dimensional slopes with cracks[J]. Engineering Geology, 2019, 252: 136-144.

    [18]

    LI Z W, YANG X L, LI T Z. Static and seismic stability assessment of 3D slopes with cracks[J]. Engineering Geology, 2019, 265: 105450.

    [19]

    GAO Y F, ZHANG F, LEI G H, et al. An extended limit analysis of three-dimensional slope stability[J]. Géotechnique, 2013, 63(6): 518.

    [20]

    DOWON P, MICHALOWSKI R L. Intricacies in three-dimensional limit analysis of earth slopes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(17): 2109-2129.

    [21]

    SUN J, ZHAO Z. Stability charts for homogenous soil slopes[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2013, 139(12): 2212-2218.

    [22] 孙超伟, 柴军瑞, 许增光, 等. 求解三维均质边坡安全系数的稳定性图表法研究[J]. 岩土工程学报, 2018, 40(11): 2068-2077. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811015.htm

    SUN Chao-wei, CHAI Jun-rui, XU Zeng-guang, et al. Stability charts for determining safety factors of 3D homogeneous slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2068-2077. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811015.htm

    [23]

    GAO Y F, ZHANG F, LEI G H, et al. Stability charts for 3D failures of homogeneous slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(9): 1528-1538.

    [24]

    LI A J, MERIFIELD R S, LYAMIN A V. Three-dimensional stability charts for slopes based on limit analysis methods[J]. Canadian Geotechnical Journal, 2010, 47(12): 1316-1334.

    [25]

    RAO P P, ZHAO L X, CHEN Q S, et al. Three-dimensional limit analysis of slopes reinforced with piles in soils exhibiting heterogeneity and anisotropy[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 194-199.

    [26]

    MICHALOWSKI R L. Stability charts for uniform slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(4): 351-355.

    [27]

    QIN C, CHIAN S C. New perspective on seismic slope stability analysis[J]. International Journal of Geomechanics, 2018, 18(7): 1-8.

    [28]

    CHEN Z Y. Random trials used in determining global minimum factors of safety of slopes[J]. Canadian Geotechnical Journal, 1992, 29(2): 225-233.

图(10)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回