Dynamic deformation characteristics and modified Hardin-Drnevich model for light weight soil mixed with EPS particles
-
摘要: 为探究EPS颗粒混合轻量土的动变形特性,通过动三轴试验研究了不同配比、围压对轻量土骨干曲线、Hardin-Drnevich模型参数的影响规律,建立了修正Hardin-Drnevich模型,并对修正模型进行了验证。结果表明:轻量土的骨干曲线呈现出明显的非线性特性与应变硬化特征。轻量土动剪切模量的倒数与剪应变关系曲线符合线性递增的变化规律,其动变形特性可以由Hardin-Drnevich模型描述。最大动剪切模量的倒数和最大动剪应力的倒数随着围压和水泥掺量的增大而减小,随EPS颗粒体积比的增大而增大。在Hardin公式的基础上,引入相对结构度k和广义孔隙比
,提出了模型参数的表达式,建立了修正Hardin-Drnevich模型。通过改变应力状态和应力路径对轻量土进行动三轴验证试验,发现模型计算值与试验值间的相对误差均小于11%,修正Hardin-Drnevich模型对轻量土骨干曲线的预测结果良好,这表明修正Hardin-Drnevich模型可以描述轻量土特殊结构性在复杂受力条件下的动力响应。 Abstract: To investigate the dynamic deformation characteristics of light weight soil mixed with EPS particles, the influences of different mixed ratios and confining pressures on the backbone curve and the parameters of Hardin-Drnevich model for light weight soil are studied through the dynamic triaxial tests, and the modified Hardin-Drnevich model is established and verified. The results show that the backbone curve of light weight soil exhibits obvious nonlinear and strain-hardening characteristics. The relationship between reciprocal of dynamic shear modulus and shear strain of light weight soil increases linearly, indicating that the dynamic deformation characteristics of light weight soil can be described by the Hardin-Drnevich model. The reciprocal of the maximum dynamic shear modulus and that of the maximum dynamic shear stress decrease with the increase of confining pressure and cement content, and increase with the increase of volume ratio of EPS particles. On the basis of the Hardin formula, the expression for model parameters is proposed by introducing the relative structure k and the generalized pore ratio e', and the modified Hardin-Drnevich model is established. By changing the stress state and stress path, the relative error between the calculated value and the test value is less than 11%. The predicted results by the modified Hardin-Drnevich model for the backbone curves of light weight soil are good, which shows that the modified Hardin-Drnevich model can describe the dynamic response of the special structure of light weight soil under complex stress conditions. -
-
表 1 土的物理性质指标
Table 1 Physical properties of soil
天然含水率w/% 相对质量密度Gs 天然密度ρ/(g·cm-3) 塑限wP/% 液限wL/% 塑性指数IP 液性指数IL 孔隙比e 有机质/% 19.75 2.72 1.702 21.27 33.62 12.35 -0.123 0.91 <5 表 2 轻量土动三轴试验方案
Table 2 Dynamic triaxial test schemes of light weight soil
影响因素 方案一 方案二 方案三 EPS颗粒体积掺入比be/% 20,30,40,50,60 40 0 水泥掺入比ac/% 10 10,15,20 0 含水率w/% 50 50 21.3 龄期T/d 28 28 0 固结压力σc /kPa 50,100,150,200 50,100,150,200 50,100,150,200 固结应力比/Kc 1.0 1.0 1.0 振动频率f/Hz 1 1 1 动剪应力比/s 0.075 0.075 0.075 表 3 轻量土的相对结构度k的计算结果
Table 3 Calculated results of structural parameter k of light weight soil
配比 素土 be=20%ac=10% be=30%ac=10% be=40%ac=10% be=50%ac=10% be=60%ac=10% be=40%ac=15% be=40%ac=20% 相对结构度k 1 8.952 8.488 7.401 5.303 4.027 8.248 8.709 表 4 轻量土广义孔隙比
的计算结果 Table 4 Calculated results of generalized void ratio
of light weight soil 水泥掺量ac/% EPS颗粒体积掺入比be/% 0 20 30 40 50 60 0 0.619 — — — — — 10 — 1.307 1.612 2.018 2.590 3.439 15 — 1.251 1.547 1.938 2.489 3.310 20 — 1.199 1.485 1.865 2.396 3.194 表 5 最大动剪切模量公式的回归参数值
Table 5 Values of regression parameters of formula for maximum dynamic shear modulus
A n1 η1 0.103 -0.305 14.135 表 6 参数b经验公式回归参数值
Table 6 Values of regression parameters of empirical formula for parameter b
η2 n2 B n3 C n4 0.0834 1.18 0.037 -12.3 0.437 -0.8 表 7 改变应力状态的轻量土动三轴验证试验方案
Table 7 Dynamic triaxial validation test schemes of light weight soil by changing stress state
EPS颗粒体积掺入比be/% 水泥掺入比ac/% 含水率w/% 龄期T/d 固结压力σc/kPa 固结应力比Kc 振动频率f/Hz 每级循环周数 40 10 50 28 125,175 1 1 10 表 8 改变应力路径的轻量土动三轴验证试验方案
Table 8 Dynamic triaxial validation test schemes of light weight soil by changing stress path
方案一 方案二 方案三 正弦波 正弦波 正弦波 加载 加载 加载 共6级 共3级 共3级 1/10 τmax 2/10 τmax 4/10 τmax 2/10 τmax 4/10 τmax 2/10 τmax …… 6/10 τmax 6/10 τmax 6/10 τmax -
[1] 侯天顺, 徐光黎. 发泡颗粒混合轻量土三轴应力-应变-孔压特性试验[J]. 中国公路学报, 2009, 22(6): 10-17. doi: 10.3321/j.issn:1001-7372.2009.06.002 HOU Tian-shun, XU Guang-li. Experiment on triaxial pore water pressure-stress-strain characteristics of foamed particle light weight soil[J]. China Journal of Highway and Transport, 2009, 22(6): 10-17. (in Chinese) doi: 10.3321/j.issn:1001-7372.2009.06.002
[2] 侯天顺, 徐光黎. 发泡颗粒混合轻量土抗剪强度特性试验研究[J]. 中国矿业大学学报, 2010, 39(4): 534-540. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201004011.htm HOU Tian-shun, XU Guang-li. Experimental study on the shear strength characteristics of foamed particle light weight soil[J]. Journal of China University of Mining & Technology, 2010, 39(4): 534-540. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201004011.htm
[3] HOU T S. Influence of expanded polystyrene size on deformation characteristics of light weight soil[J]. Journal of Central South University, 2012, 19(11): 3320-3328. doi: 10.1007/s11771-012-1410-x
[4] HOU T S. Model for compaction density and engineering properties of light weight soil[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2127-2135. doi: 10.11779/CJGE201411020
[5] 谢定义. 土动力学[M]. 西安: 西安交通大学出版社, 2011. XIE Ding-yi. Soil Dynamics[M]. Xi'an: Xi'an Jiaotong University Press, 2011. (in Chinese)
[6] HARDIN B O, BLACK W L. Vibration modulus of normally consolidated clay[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(2): 353-369. doi: 10.1061/JSFEAQ.0001100
[7] SEED H B, IDRISS I M. Soil Modulus and Damping Factors for Dynamic Response Analysis[R]. California: Earthquake Engineering Research Center, University of California, EERC70-10, 1970.
[8] HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1972, 98(7): 667-692. doi: 10.1061/JSFEAQ.0001760
[9] HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: measurement and parameter effects[J]. ASCE, J Soil Mech Found Div, 1972, 98(SM6): 603-624.
[10] 胡文尧, 王天龙. 关于黏性土剪切模量和阻尼比与剪应变关系模型中的参数[J]. 同济大学学报(自然科学版), 1982(2): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ198202005.htm HU Wen-yao, WANG Tian-long. Parameters of dynamic stress-strain models for cohesive soil[J]. Journal of Tongji University (Natural Science), 1982(2): 53-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ198202005.htm
[11] 郑大同, 王惠昌. 循环荷载作用下土的非线性应力应变模型[J]. 岩土工程学报, 1983, 5(1): 65-76. doi: 10.3321/j.issn:1000-4548.1983.01.006 ZHENG Da-tong, WANG Hui-chang. Nonlinear stress-strain model of soil under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(1): 65-76. (in Chinese) doi: 10.3321/j.issn:1000-4548.1983.01.006
[12] 陈国兴, 谢君斐, 张克绪. 土的动模量和阻尼比的经验估计[J]. 地震工程与工程振动, 1995, 15(1): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199501008.htm CHEN Guo-xing, XIE Jun-fei, ZHANG Ke-xu. Empirical estimation of dynamic modulus and damping ratio of soil[J]. Earthquake Engineering and Engineering Vibration, 1995, 15(1): 73-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199501008.htm
[13] 刘雪珠, 陈国兴, 胡庆兴. 南京地区新近沉积土的动剪切模量和阻尼比的初步研究[J]. 地震工程与工程振动, 2002, 22(5): 127-132. doi: 10.3969/j.issn.1000-1301.2002.05.023 LIU Xue-zhu, CHEN Guo-xing, HU Qing-xing. Primary study on dynamic shear modulus and damping ratio of recently deposited soil in area of Nanjing[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(5): 127-132. (in Chinese) doi: 10.3969/j.issn.1000-1301.2002.05.023
[14] 陈国兴, 刘雪珠. 南京及邻近地区新近沉积土的动剪切模量和阻尼比的试验研究[J]. 岩石力学与工程学报, 2004, 23(8): 1403-1410. doi: 10.3321/j.issn:1000-6915.2004.08.033 CHEN Guo-xing, LIU Xue-zhu. Testing study on ratio of dynamic shear moduli and ratio of damping for recently deposited soils in Nanjing and its neighboring areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(8): 1403-1410. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.08.033
[15] YUAN X M, SUN J, SUN R. Effect of consolidation ratios on maximum dynamic shear modulus of sands[J]. Earthquake Engineering and Engineering Vibration, 2005, 4(1): 59-68. doi: 10.1007/s11803-005-0024-9
[16] 袁晓铭, 孙静. 非等向固结下砂土最大动剪切模量增长模式及Hardin公式修正[J]. 岩土工程学报, 2005, 27(3): 264-269. doi: 10.3321/j.issn:1000-4548.2005.03.004 YUAN Xiao-ming, SUN Jing. Model of maximum dynamic shear modulus of sand under anisotropic consolidation and revision of Hardin’s formula[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 264-269. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.03.004
[17] 雷华阳, 姜岩, 陆培毅, 等. 交通荷载作用下结构性软土动本构关系的试验研究[J]. 岩土力学, 2009, 30(12): 3788-3792. doi: 10.3969/j.issn.1000-7598.2009.12.039 LEI Hua-yang, JIANG Yan, LU Pei-yi, et al. Experimental study of dynamic constitutive relation of structural soft soils under traffic loading[J]. Rock and Soil Mechanics, 2009, 30(12): 3788-3792. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.12.039
[18] 孙锐, 于啸波, 袁晓铭, 等. 季冻区典型土类动剪切模量阻尼比计算方法[J]. 岩土工程学报, 2017, 39(1): 116-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701012.htm SUN Rui, YU Xiao-bo, YUAN Xiao-ming, et al. Method for dynamic shear moduli and damping ratio of typical soils in seasonal frozen region[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 116-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701012.htm
[19] 姬凤玲, 吕擎峰, 李明东. 疏浚淤泥EPS颗粒轻质混合土本构模型研究[J]. 深圳大学学报, 2006, 23(3): 195-200. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL200603001.htm JI Feng-ling, LÜ Qing-feng, LI Ming-dong. Study on the constitutive model of lightweight EPS-bead-treated soil made from silt[J]. Journal of Shenzhen University (Science and Engineering), 2006, 23(3): 195-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL200603001.htm
[20] 黎冰. 动荷载下黏土与EPS颗粒混合轻质土的变形和强度特性试验研究[D]. 南京: 河海大学, 2007. LI Bing. Experimental Study on the Deformation and Strength Properties of Light Weight Clay-EPS Beads Soil Under Cyclic Loading[D]. Nanjing: Hohai University, 2007. (in Chinese)
[21] GAO Y F, WANG S M, CHEN C B. A united deformation- strength framework for light weight sand-EPS beads soil (LSES) under cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(8): 1144-1153. doi: 10.1016/j.soildyn.2011.04.002
[22] GAO H M, BU C Y, WANG Z H, et al. Dynamic characteristics of expanded polystyrene composite soil under traffic loadings considering initial consolidation state[J]. Soil Dynamics and Earthquake Engineering, 2017, 102: 86-98.
[23] HU Y, GAO H M, WANG Z H, et al. Dynamic modulus and damping ratio of EPS composite soil under small strain condition[C]//Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 2017, Rhodes Island.
[24] HOU T S, PEI Z W, LUO Y S, et al. Study on the dynamic constitutive relationship of EPS particles light weight soil based on hardin-drnevich model[J]. Geotechnical and Geological Engineering, 2020, 38(2): 1785-1798.
[25] 土工试验方法标准:GB/T50123—2019[S]. 2019. Standard for Geotechnical Testing Method: GB/T50123—2019[S]. 2019. (in Chinese)
[26] KONDNER R L. Hyperbolic stress-strain responses: Cohesive soils[J]. Journal of soil Mechanics and Foundation Division, ASCE, 1964, 89(1): 126-127.
-
期刊类型引用(8)
1. 冯德銮,黎森宇,梁仕华. 水泥固化滨海软土动力特性研究进展与评述. 广东工业大学学报. 2024(02): 23-36 . 百度学术
2. 王喆恺,谭慧明,陶小三. 应力路径对盐城粉质黏土动剪切模量影响试验研究. 中国港湾建设. 2024(08): 44-49+73 . 百度学术
3. 苟乐宇,李飒,张先伟. 菌丝–砂复合轻质土的静力强度特性研究. 岩石力学与工程学报. 2024(10): 2590-2598 . 百度学术
4. 杨海华,刘亮,刘汉龙,高鹏展,陈育民. 高聚物胶凝戈壁土的动模量及阻尼比试验研究. 振动与冲击. 2023(03): 12-20 . 百度学术
5. 何俊,张驰,管家贤,吕晓龙. 碱渣固化疏浚淤泥的动变形特性研究. 岩石力学与工程学报. 2023(S1): 3712-3721 . 百度学术
6. 郭鹏斐,侯天顺,刘茜,骆亚生. 直剪试验方法对轻量土抗剪强度的影响规律研究. 水利水电技术(中英文). 2023(04): 161-170 . 百度学术
7. 杨凯旋,侯天顺,王琪,骆亚生. 剪切速率对EPS颗粒混合轻量土抗剪强度的影响规律研究. 水资源与水工程学报. 2022(05): 200-207 . 百度学术
8. 侯天顺,郭鹏斐,杨凯旋,王琪,骆亚生. 发泡颗粒混合轻量土静止土压力特性及计算方法研究. 岩土工程学报. 2022(12): 2234-2244 . 本站查看
其他类型引用(17)