• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

酸性水化学溶液侵蚀下不同矿物成分含量灰岩溶解特性及力学特性研究

马涛, 丁梧秀, 王鸿毅, 陈桂香, 陈华军, 闫永艳

马涛, 丁梧秀, 王鸿毅, 陈桂香, 陈华军, 闫永艳. 酸性水化学溶液侵蚀下不同矿物成分含量灰岩溶解特性及力学特性研究[J]. 岩土工程学报, 2021, 43(8): 1550-1557. DOI: 10.11779/CJGE202108021
引用本文: 马涛, 丁梧秀, 王鸿毅, 陈桂香, 陈华军, 闫永艳. 酸性水化学溶液侵蚀下不同矿物成分含量灰岩溶解特性及力学特性研究[J]. 岩土工程学报, 2021, 43(8): 1550-1557. DOI: 10.11779/CJGE202108021
MA Tao, DING Wu-xiu, WANG Hong-yi, CHEN Gui-xiang, CHEN Hua-jun, YAN Yong-yan. Dissolution characteristics and mechanical properties of limestone with different mineral composition contents eroded by acid chemical solution[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1550-1557. DOI: 10.11779/CJGE202108021
Citation: MA Tao, DING Wu-xiu, WANG Hong-yi, CHEN Gui-xiang, CHEN Hua-jun, YAN Yong-yan. Dissolution characteristics and mechanical properties of limestone with different mineral composition contents eroded by acid chemical solution[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1550-1557. DOI: 10.11779/CJGE202108021

酸性水化学溶液侵蚀下不同矿物成分含量灰岩溶解特性及力学特性研究  English Version

基金项目: 

国家自然科学基金项目 51279073

详细信息
    作者简介:

    马涛(1994— ),男,硕士研究生,主要从事岩石力学方面的研究工作。E-mail:1213251300@qq.com

    通讯作者:

    丁梧秀, E-mail:wuxiu-ding@163.com

  • 中图分类号: TU411

Dissolution characteristics and mechanical properties of limestone with different mineral composition contents eroded by acid chemical solution

  • 摘要: 以灰岩、方解石为研究对象,配置不同酸性水化学溶液,对酸性水化学溶液侵蚀下灰岩、方解石试件进行溶解动力学试验及力学试验,获得水化学溶液侵蚀过程中灰岩、方解石试件溶解行为及抗压强度的变化规律,研究不同矿物成分含量对灰岩溶解特性及强度损伤特性的影响。试验结果表明:①浸泡灰岩、方解石试件水化学溶液中离子浓度随着浸泡时间的增加呈幂函数上升趋势,试件在酸性水化学溶液中的溶解过程分为酸岩反应、水解反应两个阶段;②在酸性水化学溶液侵蚀过程中,灰岩试件酸岩反应速率小于方解石试件,但其水解反应速率大于方解石试件,最终灰岩溶蚀破坏程度大于方解石;③酸性水化学溶液侵蚀下灰岩、方解石试件的力学损伤规律与其溶解动力学行为之间呈现良好的相关性,灰岩、方解石试件单轴抗压强度随着浸泡时间的增加呈幂函数下降趋势,酸岩反应阶段,灰岩强度损伤程度低于方解石,水解反应阶段,其强度损伤程度高于方解石。
    Abstract: In order to investigate the effects of different mineral composition contents on the dissolution characteristics and strength damage characteristics of limestone, the dissolution kinetics and mechanical tests of limestone and calcite specimens eroded by acidic aqueous chemical solution are carried out to obtain the variation laws of dissolution characteristics and strength damage characteristics of limestone and calcite specimens during the erosion process of acidic aqueous chemical solution. The test results show that: (1) The ion concentration in the chemical solution exhibits an increasing of power function trend with the increase of immersion time, and the dissolution process of limestone and calcite specimens in acidic aqueous chemical solution is divided into acid rock reaction and hydrolysis reaction. (2) In the erosion process of acidic aqueous chemical solution, the acid rock reaction rate of limestone specimens is lower than that of calcite ones, while the hydrolysis reaction rate is higher than that of calcite ones, and finally the limestone dissolution damage degree is greater than that of calcite specimens. (3) The mechanical damage laws of limestone and calcite specimens eroded by acidic chemical solution show a good correlation with their dissolution kinetics behavior. The uniaxial compressive strength of limestone and calcite specimens shows a decreasing trend of power function with the increase of immersion time. The strength damage degree of limestone is lower than that of calcite at the acid rock reaction stage, while the strength damage degree of limestone is higher than that of calcite at the hydrolysis reaction stage.
  • 图  1   试样X射线衍射图谱

    Figure  1.   X-ray diffraction patterns of rock samples

    图  2   水化学溶液pH值与侵蚀时间关系图

    Figure  2.   Relationship between pH value and erosion time for specimens eroded by chemical solution

    图  3   水化学溶液Ca2+浓度与侵蚀时间关系图

    Figure  3.   Relationship between concentration of Ca2+ and erosion time for specimens eroded by chemical solution

    图  4   灰岩、方解石试件在pH=4时NaCl溶液中离子浓度与侵蚀时间关系

    Figure  4.   Relationship between ion concentration and erosion time for different rock specimens eroded by chemical solution

    图  5   单胞晶体结构模型

    Figure  5.   Model for crystal structure

    图  6   水化学溶液侵蚀下试件抗压强度与侵蚀时间关系

    Figure  6.   Relationship between uniaxial compressive strength and erosion time for specimens eroded by chemical solution

    图  7   酸性水化学侵蚀下试件抗压强度与溶液离子浓度关系

    Figure  7.   Relationship between ion concentration and compressive strength for specimens eroded by chemical solution

    表  1   岩石试样矿物成分及含量

    Table  1   Mineral composition and content of rock samples  (%)

    岩石种类方解石白云石其他
    灰岩75.122.62.3
    方解石97.22.8
    下载: 导出CSV

    表  2   水化学溶液的配制

    Table  2   Artificially made chemical solutions for tests

    名称浓度/(mol·L-1)pH值
    蒸馏水6.6
    NaCl溶液0.014,6
    CaCl2溶液0.016
    下载: 导出CSV

    表  3   试件基本物理参数

    Table  3   Basic physical parameters of specimens

    岩石种类质量/g密度/(g·cm-3)相对质量密度含水率/%孔隙度/%纵波波速/(m·s-1)
    灰岩511.5712.7172.7270.0210.355181
    方解石510.1232.6802.7460.0082.405067
    下载: 导出CSV

    表  4   浸泡灰岩试件不同时间下水化学溶液Ca2+、Mg2+浓度

    Table  4   Concentrations of Ca2+ and Mg2+ in chemical solution of soaked limestone specimens at different time

    离子种类浸泡时长/d离子浓度/(mmol·L-1)
    pH=4NaClpH=6NaClpH=6CaCl2蒸馏水
    Ca2+100.27670.20290.05160.2011
    200.50650.36280.05730.3240
    300.66730.52270.06190.3978
    600.91630.78710.06900.6447
    900.97010.84850.07570.7348
    1201.01590.88390.07650.7886
    1501.05920.92600.07820.8455
    Mg2+100.05530.03690.00170.0321
    200.08920.05940.00180.0534
    300.10150.08130.00180.0640
    600.13910.11940.00210.1038
    900.14720.13120.00240.1173
    1200.15660.13690.00240.1243
    1500.16820.14010.00240.1361
    下载: 导出CSV

    表  5   浸泡方解石试件不同时间下水化学溶液Ca2+浓度

    Table  5   Concentrations of Ca2+ in chemical solution of soaked calcite specimens at different time

    离子种类浸泡时长/d离子浓度/(mmol·L-1)
    pH=4NaClpH=6NaClpH=6CaCl2蒸馏水
    Ca2+100.30350.22750.05410.2460
    200.52730.46120.05860.2767
    300.62100.55340.06100.4243
    600.81480.71330.06490.5165
    900.86080.74400.06640.6272
    1200.89830.76940.06790.6456
    1500.91690.79340.06860.7071
    注:方解石试件矿物成分中不含白云石,溶解过程中未产生Mg2+
    下载: 导出CSV

    表  6   试件在不同水化学溶液中溶解速率常数及相关系数

    Table  6   Dissolution rate constants and correlation coefficients of specimens eroded by chemical solutions

    水化学溶液灰岩方解石
    aR2aR2
    pH=4 NaCl1.14420.99600.73080.9931
    pH=6 NaCl0.91150.99290.57030.9719
    pH=6 CaCl20.26190.95480.05030.9909
    蒸馏水0.79720.99680.44050.9675
    下载: 导出CSV

    表  7   不同水化学溶液侵蚀不同时间下试件抗压强度

    Table  7   Uniaxial compressive strengths of specimens eroded by different chemical solutions at different time

    水化学溶液抗压强度/MPa
    灰岩方解石
    30 d90 d150 d30 d90 d150 d
    pH=4NaCl115.179105.55896.19771.76665.98863.234
    pH=6NaCl118.298109.685101.48672.37168.31765.942
    pH=6CaCl2120.425113.333106.68375.34373.58072.756
    蒸馏水119.437112.985104.19476.97472.57671.325
    下载: 导出CSV

    表  8   水化学溶液侵蚀下试件强度损伤相关系数

    Table  8   Correlation coefficients of strength damage of specimens under chemical solution erosion

    水化学溶液灰岩方解石
    bR2bR2
    pH=4NaCl0.86490.99870.82750.9887
    pH=6NaCl0.68900.99430.68740.9785
    pH=6CaCl20.52750.98580.33120.9461
    蒸馏水0.58590.97680.37770.9550
    下载: 导出CSV
  • [1] 宋战平, 程昀, 杨腾添, 等. 渗透压作用对灰岩孔隙结构演化规律影响的试验研究[J]. 岩土力学, 2019, 40(12): 4607-4619, 4463. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912007.htm

    SONG Zhan-ping, CHENG Yun, YANG Teng-tian, et al. Experimental study of the influence of osmotic pressure on pore structure evolution in limestone[J]. Rock and Soil Mechanics, 2019, 40(12): 4607-4619, 4463. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912007.htm

    [2] 黄波林, 殷跃平, 张枝华, 等. 三峡工程库区岩溶岸坡消落带岩体劣化特征研究[J]. 岩石力学与工程学报, 2019, 38(9): 1786-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909006.htm

    HUANG Bo-lin, YIN Yue-ping, ZHANG Zhi-hua, et al. Study on deterioration characteristics of shallow rock mass in water the level fluctuation zone of karst bank slopes in Three Gorges Reservoir area[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1786-1796. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909006.htm

    [3]

    PAN Y, WU G, ZHAO Z M, et al. Analysis of rock slope stability under rainfall conditions considering the water-induced weakening of rock[J]. Computers and Geotechnics, 2020, 128: 103806. doi: 10.1016/j.compgeo.2020.103806

    [4]

    LUO S L, JIN X G, HUANG D. Long-term coupled effects of hydrological factors on kinematic responses of a reactivated landslide in the Three Gorges Reservoir[J]. Engineering Geology, 2019, 261: 105271. doi: 10.1016/j.enggeo.2019.105271

    [5]

    WANG J, ZHANG Y, QIN Z, et al. Analysis method of water inrush for tunnels with damaged water-resisting rock mass based on finite element method-smooth particle hydrodynamics coupling[J]. Computers and Geotechnics, 2020, 126: 103725. doi: 10.1016/j.compgeo.2020.103725

    [6] 李光雷, 蔚立元, 苏海健, 等. 化学腐蚀灰岩SHPB冲击动力学性能研究[J]. 岩石力学与工程学报, 2018, 37(9): 2075-2083. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809007.htm

    LI Guang-lei, WEI Li-yuan, SU Hai-jian, et al. Dynamic properties of corroded limestone based on SHPB[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2075-2083. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809007.htm

    [7]

    HYUNSANG Y, YOUNGMIN K, WONSUK L, et al. Dynamic corroded limestone properties of based on SHPE[J]. Journal of Petroleum Ence and Engineering, 2018, 168: 478-494. doi: 10.1016/j.petrol.2018.05.041

    [8]

    FANG X Y, XU J Y, WANG P X. Compressive failure characteristics of yellow sandstone subjected to the coupling effects of chemical corrosion and repeated freezing and thawing[J]. Engineering Geology, 2018, 233: 160-171. doi: 10.1016/j.enggeo.2017.12.014

    [9] 张站群, 蔚立元, 李光雷, 等. 化学腐蚀后灰岩动态拉伸力学特性试验研究[J]. 岩土工程学报, 2020, 42(6): 1151-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006025.htm

    ZHANG Zhan-qun, YU Li-yuan, LI Guang-lei, et al. Experimental research on dynamic tensile mechanics of limestone after chemical corrosion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1151-1158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006025.htm

    [10] 丁梧秀, 陈建平, 徐桃, 等. 化学溶液侵蚀下灰岩的力学及化学溶解特性研究[J]. 岩土力学, 2015, 36(7): 1825-1830. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507001.htm

    DING Wu-xiu, CHEN Jian-ping, XU Tao, et al. Mechanical and chemical characteristics of limestone during chemical erosion[J]. Rock and Soil Mechanics, 2015, 36(7): 1825-1830. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507001.htm

    [11] 丁梧秀, 徐桃, 王鸿毅, 等. 水化学溶液及冻融耦合作用下灰岩力学特性试验研究[J]. 岩石力学与工程学报, 2015, 34(5): 979-985. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201505013.htm

    DING Wu-xiu, XU Tao, WANG Hong-yi, et al. Experimental study on mechanical properties of limestone under chemical solution and freezing-thawing process[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5): 979-985. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201505013.htm

    [12]

    YU L Y, ZHANG Z Q, WU J Y, et al. Experimental study on the dynamic fracture mechanical properties of limestone after chemical corrosion[J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102620. doi: 10.1016/j.tafmec.2020.102620

    [13]

    LI H, ZHONG Z L, LIU X R, et al. Micro-damage evolution and macro-mechanical property degradation of limestone due to chemical effects[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 257-265. doi: 10.1016/j.ijrmms.2018.07.011

    [14]

    LIN Y, ZHOU K P, GAO R G, et al. Influence of chemical corrosion on pore structure and mechanical properties of sandstone[J]. Geofluids, 2019: 1-15.

    [15]

    ZHANG J, DENG H W, TAHERI A, et al. Degradation of physical and mechanical properties of sandstone subjected to freeze-thaw cycles and chemical erosion[J]. Cold Regions Science and Technology, 2018, 155: 37-46. doi: 10.1016/j.coldregions.2018.07.007

    [16]

    LI H M, LI H G, WANG K L, et al. Effect of rock composition microstructure and pore characteristics on its rock mechanics properties[J]. International Journal of Mining Science and Technology, 2018, 28(2): 303-308. doi: 10.1016/j.ijmst.2017.12.008

    [17] 吴永胜, 谭忠盛, 余贤斌, 等. 龙门山北段千枚岩强度及变形特性对比试验研究[J]. 岩土工程学报, 2017, 39(6): 1106-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706022.htm

    WU Yong-sheng, TAN Zhong-sheng, YU Xian-bin, et al. Comparative tests on strength and deformation of phyllite of northern tunnels of Longmen Mountains[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1106-1114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706022.htm

    [18]

    LI Q, LI J P, DUAN L C, et al. Prediction of rock abrasivity and hardness from mineral composition[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 140(2): 104658.

    [19]

    LI M, GUO Y H, WANG H C, et al. Effects of mineral composition on the fracture propagation of tight sandstones in the Zizhou area, east Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2020, 78: 103334. doi: 10.1016/j.jngse.2020.103334

    [20]

    ZHANG W Q, LÜ C. Effects of mineral content on limestone properties with exposure to different temperatures[J]. Journal of Petroleum Science and Engineering, 2020, 188: 106941. doi: 10.1016/j.petrol.2020.106941

    [21] 陈如冰, 罗明明, 罗朝晖, 等. 三峡地区碳酸盐岩化学组分与溶蚀速率的响应关系[J]. 中国岩溶, 2019, 38(2): 258-264. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201902014.htm

    CHEN Ru-bing, LUO Ming-ming, LUO Zhao-hui, et al. Response relationship between chemical composition and dissolution rate of carbonate rocks in the Three Gorges area[J]. Carsologica Sinica, 2019, 38(2): 258-264. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201902014.htm

    [22]

    LIU Y Q, SUN C, XIONG Y, et al. Kinetics study of surface reaction between acid and sandstone based on the rotation disk instrument[J]. Chemistry and Technology of Fuels and Oils, 2020, 55(6): 765-777. doi: 10.1007/s10553-020-01092-z

    [23]

    MARIENI C, MATTER J M, TEAGLE D A H. Experimental study on mafic rock dissolution rates within CO2-seawater-rock systems[J]. Geochimica et Cosmochimica Acta, 2020, 272: 259-275. doi: 10.1016/j.gca.2020.01.004

    [24]

    IVANISHIN I B, NASR-EL-DIN H A. Effect of calcium content on the dissolution rate of Dolomites in HCl acid[J]. Journal of Petroleum Science and Engineering, 2021, 202: 108463. doi: 10.1016/j.petrol.2021.108463

    [25] 工程岩体试验方法标准:GB/T 50266—2013[S]. 2013.

    Engineering Rock Mass Test Method Standard: GB/T 50266—2013[S]. 2013. (in Chinese)

    [26] 王金华, 陈嘉琦. 我国石窟寺保护现状及发展探析[J]. 东南文化, 2018(1): 6-14, 127. doi: 10.3969/j.issn.1001-179X.2018.01.001

    WANG Jin-hua, CHEN Jia-qi. Current stalls and future development of cave temples protection in China[J]. Southeast Culture, 2018(1): 6-14, 127. (in Chinese) doi: 10.3969/j.issn.1001-179X.2018.01.001

图(7)  /  表(8)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-24
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-07-31

目录

    /

    返回文章
    返回