Experimental study on remediation of chromium-contaminated mucky clay by electrokinetic soil flushing method considering temperature
-
摘要: 自行设计了温控电动联合淋洗试验装置,开展了铬污染淤泥质黏土室内土柱试验,分析了电流、电解质溶液pH的变化以及淋洗液种类、外加电压、温度对铬去除效果的影响。结果表明:电动联合淋洗法可以有效去除土体中的重金属铬,当电压较小为15 V,淋洗液为十二烷基苯磺酸钠(SDS)和草酸(OA)时,Cr(Ⅵ)的去除率分别高达95.86%和95.91%,Cr(总)的去除率分别为81.31%和78.08%。升高温度有助于草酸与铬的络合作用及铬的迁移,当温度升高至45℃时,Cr(Ⅵ)与Cr(总)的去除率可高达99.65%与82.50%;而当淋洗液为SDS时,升高温度使Cr(总)的去除率降低了10.99%。电压提高到55V对铬迁移的促进作用有限,淋洗剂为SDS和草酸时,Cr(VI)的去除率分别提高2.58%和3.05%,Cr(总)的去除率分别提高9.29%和3.78%,从节能角度考虑可采用较低的电压。电动联合淋洗法可有效去除污染土中水溶态及弱酸提取态的铬,降低污染土的毒性,并使土粒之间的孔隙变小,土粒结构更为紧密。Abstract: A series of column tests on chromium-contaminated mucky clay are conducted in lab using the self-designed electrokinetic soil flushing apparatus considering temperature. The changes of the current and electrolyte solution pH, and the effects of the type of leaching agent, applied voltage and temperature on the removal behavior of chromium are analyzed. The results show that the chromium in soil can be removed effectively by the electrokinetic soil flushing method. When the voltage is 15 V, using sodium dodecylbenzene sulfonate (SDS) and oxalic acid (OA) as leaching agent, the removal ratio of Cr(VI) is 95.86% and 95.91% respectively, and the removal ratio of Cr (total) is 81.31% and 78.08% respectively. Raising temperature to 45℃ can promote complexation of oxalic acid and chromium leading to the migration of chromium, the removal ratio of Cr (VI) and Cr (total) reaches 99.65% and 82.50% respectively. However, raising temperature results in the removal ratio of Cr(total) by 10.99% when using SDS as leaching agent. Raising the voltage to 55 V, the chromium migration has slight effect on its migration. When using SDS and OA as leaching agents, the removal ratio of Cr(VI) can increase by 2.58% and 3.05% respectively, and that of Cr (total) can increase by 9.29% and 3.78% respectively. Lower voltage can be selected for the sake of saving energy. The water-soluble and weak acid-extracted chromium can be efficiently removed by the electrokinetic soil flushing method and the toxicity of contaminated soil can be reduced. After remediation, the soil structure is changed, and the pores between soil particles become smaller and the soil is more compacted.
-
-
表 1 试验分组
Table 1 Experimental groups
序号 编号 淋洗液种类 电压/V 温度/℃ 1 SFEK55-SDS15 0.5%KCl,0.5%SDS 55 15 2 SFEK55-SDS45 0.5%KCl,0.5%SDS 55 45 3 SFEK15-SDS15 0.5%KCl,0.5%SDS 15 15 4 SFEK15-SDS45 0.5%KCl,0.5%SDS 15 45 5 SFEK55-OA15 0.5%KCl,0.5%OA 55 15 6 SFEK55-OA45 0.5%KCl,0.5%OA 55 45 7 SFEK15-OA15 0.5%KCl,0.5%OA 15 15 8 SFEK15-OA45 0.5%KCl,0.5%OA 15 45 9 EK55-15 0.5%KCl 55 15 10 SF-15 0.5%KCl 0 15 11 SF-SDS15 0.5%KCl,0.5%SDS 0 15 12 SF-OA15 0.5%KCl,0.5%OA 0 15 表 3 土柱中Cr(总)残余浓度、Cr(总)去除率及能耗
Table 3 Residual concentrations and removal ratios of Cr (total) in soil columns and energy consumption
序号 编号 Cr(总)浓度/(mg·kg-1) R 2/% 能耗/(kW·h-1) E/(kW·h·g-1) 淋出液中铬(总)浓度/(mg·L-1) 1 2 3 4 5 1 SFEK55-SDS15 139 122 107 109 108 88.86 10.36 52.87 33.1 2 SFEK55-SDS45 254 264 247 204 193 77.87 10.14 59.04 28.5 3 SFEK15-SDS15 231 194 201 183 172 81.31 1.28 7.13 32.6 4 SFEK15-SDS45 232 229 238 240 238 77.58 0.96 5.61 29.2 5 SFEK55-OA15 251 261 157 183 144 81.03 8.27 46.28 29.2 6 SFEK55-OA45 242 213 148 180 136 82.50 8.74 48.07 30.9 7 SFEK15-OA15 244 249 255 211 192 78.08 1.08 6.25 29.8 8 SFEK15-OA45 191 199 209 195 197 81.12 1.87 10.43 32.3 9 EK55-15 332 365 378 298 211 69.83 111.62 25.1 10 SF-15 849 923 965 938 751 15.70 5.1 11 SF-SDS15 623 879 923 801 610 26.93 8.1 12 SF-OA15 599 833 978 721 543 30.02 12.3 表 2 土柱中Cr(Ⅵ)残余浓度与Cr(Ⅵ)总去除率
Table 2 Residual concentrations and total removal ratios of Cr(VI) in soil columns
序号 编号 Cr(Ⅵ)浓度/(mg·kg-1) R 1/% 1 2 3 4 5 1 SFEK55-SDS15 12 15 15 15 15 98.33 2 SFEK55-SDS45 7 5 6 4 5 99.37 3 SFEK15-SDS15 49 42 37 29 21 95.86 4 SFEK15-SDS45 36 36 34 38 32 95.91 5 SFEK55-OA15 12 12 10 9 7 98.84 6 SFEK55-OA45 6 3 3 2 1 99.65 7 SFEK15-OA15 36 36 34 38 32 95.91 8 SFEK15-OA45 12 15 18 18 12 98.26 9 EK55-15 66 51 89 62 54 92.51 10 SF-15 617 721 850 692 611 18.81 11 SF-SDS15 539 721 844 692 455 24.40 12 SF-OA15 534 792 721 631 432 27.67 -
[1] 张亭亭, 魏明俐, 熊欢, 等. 多硫化钙对铬污染土的稳定性能及铬赋存形态试验研究[J]. 岩石力学与工程学报, 2017, 36(增刊2): 4282-4289. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2064.htm ZHANG Ting-ting, WEI Ming-li, XIONG Huan, et al. Chromium speciation and leaching behaviors of chromium contaminated soil stabilized by calcium polysulfide[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 4282-4289. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2064.htm
[2] 朱文会, 李志涛, 王夏晖, 等. 不同异位修复工艺对高浓度铬渣污染土体中Cr的去除特性[J]. 化工学报, 2018, 69(6): 2730-2736. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201806049.htm ZHU Wen-hui, LI Zhi-tao, WANG Xia-hui, et al. Characteristics of chromium removing using different ex-situ remediations in soil seriously contaminated by chromite ore processing residue[J]. Journal of Chemical Industry and Engineering(China), 2018, 69(6): 2730-2736. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201806049.htm
[3] 刘仕业, 岳昌盛, 彭犇, 等. 铬污染毒性土壤清洁修复研究进展与综合评价[J]. 工程科学学报, 2018, 40(11): 1275-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201811001.htm LIU Shi-ye, YUE Chang-sheng, PENG Ben, et al. Research progress on remediation technologies of chromium-contaminated soil: a review[J]. Chinese Journal of Engineering, 2018, 40(11): 1275-1287. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201811001.htm
[4] 张亭亭, 何星星, 王平, 等. 粒径和pH值对铬污染土稳定性能的影响规律及机制分析[J]. 岩土力学, 2017, 38(增刊2): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2012.htm ZHANG Ting-ting, HE Xing-xing, WANG Ping, et al. Influence of particle size and pH on stability of chromium contaminated soil and its mechanism analysis[J]. Rock and Soil Mechanics, 2017, 38(S2): 82-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2012.htm
[5] GITIPOUR S, AHMADI S, MADADIAN E, et al. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent[J]. Environmental Technology, 2016, 37(1): 141-151.
[6] ZOU Q, GAO Y, YI S, et al. Multi-step column leaching using low-molecular-weight organic acids for remediating vanadium-and chromium-contaminated soil[J]. Environmental Science and Pollution Research, 2019, 26(15): 15406-15413. doi: 10.1007/s11356-019-04915-7
[7] KANIA M, GAUTIER M, BLANC D, et al. Leaching behavior of major and trace elements from sludge deposits of a French vertiOAl flow constructed wetland[J]. Science of The Total Environment, 2019, 649: 544-553. doi: 10.1016/j.scitotenv.2018.08.364
[8] 郑复乐, 姚荣江, 杨劲松, 等. 淋洗液对沿海滩涂设施土体重金属的洗脱效应[J]. 中国环境科学, 2018, 38(11): 4218-4227. doi: 10.3969/j.issn.1000-6923.2018.11.030 ZHENG Fu-le, YAO Rong-jiang, YANG Jing-song, et al. Eluting effects of different eluents on heavy metals in greenhouse soils from coastal mudflat area[J]. China Environmental Science, 2018, 38(11): 4218-4227. (in Chinese) doi: 10.3969/j.issn.1000-6923.2018.11.030
[9] LI D, JI G, HU J, et al. Remediation strategy and electrochemistry flushing & reduction technology for real Cr(VI)-contaminated soils[J]. Chemical Engineering Journal, 2018, 334: 1281-1288. doi: 10.1016/j.cej.2017.11.074
[10] 蔡国庆, 赵成刚, 刘艳. 一种预测不同温度下非饱和土相对渗透系数的间接方法[J]. 岩土力学, 2011, 32(5): 1405-1410. doi: 10.3969/j.issn.1000-7598.2011.05.020 CAI Guo-qing, ZHAO Cheng-gang, LIU Yan. An indirect method for predicting permeability coefficients of unsaturated soils at different temperatures[J]. Rock and Soil Mechanics, 2011, 32(5): 1405-1410. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.05.020
[11] 王媛, 施斌, 高磊, 等. 黏性土渗透性温度效应实验研究[J]. 工程地质学报, 2010, 18(3): 351-356. doi: 10.3969/j.issn.1004-9665.2010.03.010 WANG Yuan, SHI Bin, GAO Lei, et al. Laboratory tests for temperature effects of clayey soil permeability[J]. Journal of Engineering Geology, 2010, 18(3): 351-356. (in Chinese) doi: 10.3969/j.issn.1004-9665.2010.03.010
[12] SAKELLARIOU L, PAPASSIOPI N. An approach to electrokinetic removal of Cr(VI) from soil and kaolin samples[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 101(6): 718-724. doi: 10.1007/s00128-018-2432-3
[13] 蔡光华, 陆海军, 刘松玉. 温度梯度下压实黏土的水热迁移规律和渗透特性[J]. 东北大学学报(自然科学版), 2017, 38(6): 874-879. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201706023.htm CAI Guang-hua, LU Hai-jun, LIU Song-yu. Moisture-heat migration laws and permeability of compacted clay under temperature gradient[J]. Journal of Northeastern University (Natural Science), 2017, 38(6): 874-879. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201706023.htm
[14] DU W, ZOU H, SUN Y C, et al. Surfactant-enhanced electrokinetic remediation of chromium and phenanthrene cross-polluted soils[J]. Environmental Engineering Science, 2017, 34(12): 908-916. doi: 10.1089/ees.2016.0567
[15] ACAR Y B, ALSHAWABKEH A N. Principles of Electro- kinetic remediation[J]. Environmental Science Technology, 1993, 27(13): 2638-2647. doi: 10.1021/es00049a002
[16] FU R, WEN D, CHEN X, et al. Treatment of decabromodiphenyl ether (BDE209) contaminated soil by solubilizer-enhanced electrokinetics coupled with ZVI-PRB[J]. Environmental Science and Pollution Research, 2017, 24(15): 13509-13518. doi: 10.1007/s11356-017-8919-3
[17] WAN Y, ZHAI J, WANG A, et al. Conceptual design and experiments of electrochemistry-flushing technology for the remediation of historically Cr(VI)-contaminated soil[J]. Ekoloji, 2019, 28(107): 873-881.
[18] LI D, SUN D L, HU S Y, et al. Environmental research on remediation of cd-contaminated soil by electrokinetic remediation[J]. Chemosphere, 2016, 144: 1823-1830. doi: 10.1016/j.chemosphere.2015.09.077
[19] HUANG C H, YUAN C, WU M H, et al. Electrochemical degradation of ibuprofen-contaminated soils over Fe/Al oxidation electrodes[J]. Science of The Total Environment, 2018, 640: 1205-1213.
[20] SHU J, SUN X, LIU R, et al. Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents[J]. Ecotoxicology and Environmental Safety, 2019, 171: 523-529. doi: 10.1016/j.ecoenv.2019.01.025
[21] CHEN W, KIRKELUND G M, JENSEN P E, et al. Electrodialytic extraction of Cr from water-washed MSWI fly ash by changing pH and redox conditions[J]. Waste Management, 2018, 71: 215-223. doi: 10.1016/j.wasman.2017.09.035
[22] KUMAR V, CHITHRA K. Removal of Cr (VI) from spiked soils by electrokinetics[J]. Research Journal of Chemistry and Environment, 2013, 17(8): 52-59.
-
期刊类型引用(4)
1. 王艳,薛逸翔,朱鹏. 电动联合渗透反应屏障修复污染土壤的研究进展. 安全与环境学报. 2024(01): 330-344 . 百度学术
2. 周细霞,刘朝淑,孙荣国. Fe(II)改性蒙脱石对土壤汞的吸附固定机理探究. 贵州师范大学学报(自然科学版). 2024(04): 63-74 . 百度学术
3. 王艳,张李奕岚,朱鹏,王恒宇. 电动法去除污染土中重金属铬的试验研究. 安全与环境学报. 2024(08): 3251-3259 . 百度学术
4. 李宗春,郭苗章,谌伟艳. 某废弃矿山重金属污染土壤治理约束优化研究. 环境科学与管理. 2023(05): 71-75 . 百度学术
其他类型引用(3)