• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

温控电动联合淋洗法去除污染淤泥质黏土中铬的试验研究

王艳, 王爱骅, 刘干斌

王艳, 王爱骅, 刘干斌. 温控电动联合淋洗法去除污染淤泥质黏土中铬的试验研究[J]. 岩土工程学报, 2021, 43(8): 1542-1549. DOI: 10.11779/CJGE202108020
引用本文: 王艳, 王爱骅, 刘干斌. 温控电动联合淋洗法去除污染淤泥质黏土中铬的试验研究[J]. 岩土工程学报, 2021, 43(8): 1542-1549. DOI: 10.11779/CJGE202108020
WANG Yan, WANG Ai-hua, LIU Gan-bin. Experimental study on remediation of chromium-contaminated mucky clay by electrokinetic soil flushing method considering temperature[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1542-1549. DOI: 10.11779/CJGE202108020
Citation: WANG Yan, WANG Ai-hua, LIU Gan-bin. Experimental study on remediation of chromium-contaminated mucky clay by electrokinetic soil flushing method considering temperature[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1542-1549. DOI: 10.11779/CJGE202108020

温控电动联合淋洗法去除污染淤泥质黏土中铬的试验研究  English Version

基金项目: 

国家自然科学基金项目 51678311

浙江省自然科学基金项目 LY19E080011

宁波市社发重大项目 2017C510002

详细信息
    作者简介:

    王艳(1985— ),女,博士,副教授,主要从事环境岩土工程方面的研究工作。E-mail:wangyan@nbu.edu.cn

  • 中图分类号: TU411

Experimental study on remediation of chromium-contaminated mucky clay by electrokinetic soil flushing method considering temperature

  • 摘要: 自行设计了温控电动联合淋洗试验装置,开展了铬污染淤泥质黏土室内土柱试验,分析了电流、电解质溶液pH的变化以及淋洗液种类、外加电压、温度对铬去除效果的影响。结果表明:电动联合淋洗法可以有效去除土体中的重金属铬,当电压较小为15 V,淋洗液为十二烷基苯磺酸钠(SDS)和草酸(OA)时,Cr(Ⅵ)的去除率分别高达95.86%和95.91%,Cr(总)的去除率分别为81.31%和78.08%。升高温度有助于草酸与铬的络合作用及铬的迁移,当温度升高至45℃时,Cr(Ⅵ)与Cr(总)的去除率可高达99.65%与82.50%;而当淋洗液为SDS时,升高温度使Cr(总)的去除率降低了10.99%。电压提高到55V对铬迁移的促进作用有限,淋洗剂为SDS和草酸时,Cr(VI)的去除率分别提高2.58%和3.05%,Cr(总)的去除率分别提高9.29%和3.78%,从节能角度考虑可采用较低的电压。电动联合淋洗法可有效去除污染土中水溶态及弱酸提取态的铬,降低污染土的毒性,并使土粒之间的孔隙变小,土粒结构更为紧密。
    Abstract: A series of column tests on chromium-contaminated mucky clay are conducted in lab using the self-designed electrokinetic soil flushing apparatus considering temperature. The changes of the current and electrolyte solution pH, and the effects of the type of leaching agent, applied voltage and temperature on the removal behavior of chromium are analyzed. The results show that the chromium in soil can be removed effectively by the electrokinetic soil flushing method. When the voltage is 15 V, using sodium dodecylbenzene sulfonate (SDS) and oxalic acid (OA) as leaching agent, the removal ratio of Cr(VI) is 95.86% and 95.91% respectively, and the removal ratio of Cr (total) is 81.31% and 78.08% respectively. Raising temperature to 45℃ can promote complexation of oxalic acid and chromium leading to the migration of chromium, the removal ratio of Cr (VI) and Cr (total) reaches 99.65% and 82.50% respectively. However, raising temperature results in the removal ratio of Cr(total) by 10.99% when using SDS as leaching agent. Raising the voltage to 55 V, the chromium migration has slight effect on its migration. When using SDS and OA as leaching agents, the removal ratio of Cr(VI) can increase by 2.58% and 3.05% respectively, and that of Cr (total) can increase by 9.29% and 3.78% respectively. Lower voltage can be selected for the sake of saving energy. The water-soluble and weak acid-extracted chromium can be efficiently removed by the electrokinetic soil flushing method and the toxicity of contaminated soil can be reduced. After remediation, the soil structure is changed, and the pores between soil particles become smaller and the soil is more compacted.
  • 图  1   温控电动联合淋洗试验装置

    Figure  1.   Experimental apparatus of electrokinetic enhanced soil flushing considering temperature

    图  2   电流随时间变化

    Figure  2.   Variation of electric currents with elapsed time

    图  3   淋出液pH随时间变化

    Figure  3.   Variation of pH in leachates with elapsed time

    图  4   淋洗液pH随时间变化

    Figure  4.   Variation of pH in leaching agents with elapsed time

    图  5   淋出液中Cr(总)浓度随时间变化

    Figure  5.   Variation of Cr (total) concentration in leachates with elapsed time

    图  6   土样扫描电镜图像

    Figure  6.   Scanning electron microscope images of soil samples

    图  7   污染土和SFEK15-OA45组土柱中铬形态

    Figure  7.   Speciation of chromium in contaminated soil and in soil column of group SFEK15-OA45

    表  1   试验分组

    Table  1   Experimental groups

    序号编号淋洗液种类电压/V温度/℃
    1 SFEK55-SDS150.5%KCl,0.5%SDS5515
    2SFEK55-SDS450.5%KCl,0.5%SDS5545
    3SFEK15-SDS150.5%KCl,0.5%SDS1515
    4SFEK15-SDS450.5%KCl,0.5%SDS1545
    5SFEK55-OA150.5%KCl,0.5%OA5515
    6SFEK55-OA450.5%KCl,0.5%OA5545
    7SFEK15-OA150.5%KCl,0.5%OA1515
    8SFEK15-OA450.5%KCl,0.5%OA1545
    9EK55-150.5%KCl5515
    10SF-150.5%KCl015
    11SF-SDS150.5%KCl,0.5%SDS015
    12SF-OA150.5%KCl,0.5%OA015
    下载: 导出CSV

    表  3   土柱中Cr(总)残余浓度、Cr(总)去除率及能耗

    Table  3   Residual concentrations and removal ratios of Cr (total) in soil columns and energy consumption

    序号编号Cr(总)浓度/(mg·kg-1) R 2/%能耗/(kW·h-1) E/(kW·h·g-1)淋出液中铬(总)浓度/(mg·L-1)
    12345
    1 SFEK55-SDS15 13912210710910888.8610.3652.8733.1
    2SFEK55-SDS4525426424720419377.8710.1459.0428.5
    3SFEK15-SDS1523119420118317281.311.287.1332.6
    4SFEK15-SDS4523222923824023877.580.965.6129.2
    5SFEK55-OA1525126115718314481.038.2746.2829.2
    6SFEK55-OA4524221314818013682.508.7448.0730.9
    7 SFEK15-OA15 24424925521119278.081.086.2529.8
    8SFEK15-OA45191199209195197 81.12 1.8710.4332.3
    9 EK55-15 33236537829821169.83 111.6225.1
    10 SF-15 84992396593875115.70  5.1
    11SF-SDS1562387992380161026.93  8.1
    12SF-OA1559983397872154330.02  12.3
    下载: 导出CSV

    表  2   土柱中Cr(Ⅵ)残余浓度与Cr(Ⅵ)总去除率

    Table  2   Residual concentrations and total removal ratios of Cr(VI) in soil columns

    序号编号Cr(Ⅵ)浓度/(mg·kg-1) R 1/%
    12345
    1 SFEK55-SDS15121515151598.33
    2SFEK55-SDS457564599.37
    3SFEK15-SDS15494237292195.86
    4SFEK15-SDS45363634383295.91
    5SFEK55-OA151212109798.84
    6SFEK55-OA456332199.65
    7SFEK15-OA15363634383295.91
    8SFEK15-OA45121518181298.26
    9EK55-15665189625492.51
    10SF-1561772185069261118.81
    11SF-SDS1553972184469245524.40
    12SF-OA1553479272163143227.67
    下载: 导出CSV
  • [1] 张亭亭, 魏明俐, 熊欢, 等. 多硫化钙对铬污染土的稳定性能及铬赋存形态试验研究[J]. 岩石力学与工程学报, 2017, 36(增刊2): 4282-4289. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2064.htm

    ZHANG Ting-ting, WEI Ming-li, XIONG Huan, et al. Chromium speciation and leaching behaviors of chromium contaminated soil stabilized by calcium polysulfide[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 4282-4289. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2064.htm

    [2] 朱文会, 李志涛, 王夏晖, 等. 不同异位修复工艺对高浓度铬渣污染土体中Cr的去除特性[J]. 化工学报, 2018, 69(6): 2730-2736. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201806049.htm

    ZHU Wen-hui, LI Zhi-tao, WANG Xia-hui, et al. Characteristics of chromium removing using different ex-situ remediations in soil seriously contaminated by chromite ore processing residue[J]. Journal of Chemical Industry and Engineering(China), 2018, 69(6): 2730-2736. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201806049.htm

    [3] 刘仕业, 岳昌盛, 彭犇, 等. 铬污染毒性土壤清洁修复研究进展与综合评价[J]. 工程科学学报, 2018, 40(11): 1275-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201811001.htm

    LIU Shi-ye, YUE Chang-sheng, PENG Ben, et al. Research progress on remediation technologies of chromium-contaminated soil: a review[J]. Chinese Journal of Engineering, 2018, 40(11): 1275-1287. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201811001.htm

    [4] 张亭亭, 何星星, 王平, 等. 粒径和pH值对铬污染土稳定性能的影响规律及机制分析[J]. 岩土力学, 2017, 38(增刊2): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2012.htm

    ZHANG Ting-ting, HE Xing-xing, WANG Ping, et al. Influence of particle size and pH on stability of chromium contaminated soil and its mechanism analysis[J]. Rock and Soil Mechanics, 2017, 38(S2): 82-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2012.htm

    [5]

    GITIPOUR S, AHMADI S, MADADIAN E, et al. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent[J]. Environmental Technology, 2016, 37(1): 141-151.

    [6]

    ZOU Q, GAO Y, YI S, et al. Multi-step column leaching using low-molecular-weight organic acids for remediating vanadium-and chromium-contaminated soil[J]. Environmental Science and Pollution Research, 2019, 26(15): 15406-15413. doi: 10.1007/s11356-019-04915-7

    [7]

    KANIA M, GAUTIER M, BLANC D, et al. Leaching behavior of major and trace elements from sludge deposits of a French vertiOAl flow constructed wetland[J]. Science of The Total Environment, 2019, 649: 544-553. doi: 10.1016/j.scitotenv.2018.08.364

    [8] 郑复乐, 姚荣江, 杨劲松, 等. 淋洗液对沿海滩涂设施土体重金属的洗脱效应[J]. 中国环境科学, 2018, 38(11): 4218-4227. doi: 10.3969/j.issn.1000-6923.2018.11.030

    ZHENG Fu-le, YAO Rong-jiang, YANG Jing-song, et al. Eluting effects of different eluents on heavy metals in greenhouse soils from coastal mudflat area[J]. China Environmental Science, 2018, 38(11): 4218-4227. (in Chinese) doi: 10.3969/j.issn.1000-6923.2018.11.030

    [9]

    LI D, JI G, HU J, et al. Remediation strategy and electrochemistry flushing & reduction technology for real Cr(VI)-contaminated soils[J]. Chemical Engineering Journal, 2018, 334: 1281-1288. doi: 10.1016/j.cej.2017.11.074

    [10] 蔡国庆, 赵成刚, 刘艳. 一种预测不同温度下非饱和土相对渗透系数的间接方法[J]. 岩土力学, 2011, 32(5): 1405-1410. doi: 10.3969/j.issn.1000-7598.2011.05.020

    CAI Guo-qing, ZHAO Cheng-gang, LIU Yan. An indirect method for predicting permeability coefficients of unsaturated soils at different temperatures[J]. Rock and Soil Mechanics, 2011, 32(5): 1405-1410. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.05.020

    [11] 王媛, 施斌, 高磊, 等. 黏性土渗透性温度效应实验研究[J]. 工程地质学报, 2010, 18(3): 351-356. doi: 10.3969/j.issn.1004-9665.2010.03.010

    WANG Yuan, SHI Bin, GAO Lei, et al. Laboratory tests for temperature effects of clayey soil permeability[J]. Journal of Engineering Geology, 2010, 18(3): 351-356. (in Chinese) doi: 10.3969/j.issn.1004-9665.2010.03.010

    [12]

    SAKELLARIOU L, PAPASSIOPI N. An approach to electrokinetic removal of Cr(VI) from soil and kaolin samples[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 101(6): 718-724. doi: 10.1007/s00128-018-2432-3

    [13] 蔡光华, 陆海军, 刘松玉. 温度梯度下压实黏土的水热迁移规律和渗透特性[J]. 东北大学学报(自然科学版), 2017, 38(6): 874-879. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201706023.htm

    CAI Guang-hua, LU Hai-jun, LIU Song-yu. Moisture-heat migration laws and permeability of compacted clay under temperature gradient[J]. Journal of Northeastern University (Natural Science), 2017, 38(6): 874-879. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201706023.htm

    [14]

    DU W, ZOU H, SUN Y C, et al. Surfactant-enhanced electrokinetic remediation of chromium and phenanthrene cross-polluted soils[J]. Environmental Engineering Science, 2017, 34(12): 908-916. doi: 10.1089/ees.2016.0567

    [15]

    ACAR Y B, ALSHAWABKEH A N. Principles of Electro- kinetic remediation[J]. Environmental Science Technology, 1993, 27(13): 2638-2647. doi: 10.1021/es00049a002

    [16]

    FU R, WEN D, CHEN X, et al. Treatment of decabromodiphenyl ether (BDE209) contaminated soil by solubilizer-enhanced electrokinetics coupled with ZVI-PRB[J]. Environmental Science and Pollution Research, 2017, 24(15): 13509-13518. doi: 10.1007/s11356-017-8919-3

    [17]

    WAN Y, ZHAI J, WANG A, et al. Conceptual design and experiments of electrochemistry-flushing technology for the remediation of historically Cr(VI)-contaminated soil[J]. Ekoloji, 2019, 28(107): 873-881.

    [18]

    LI D, SUN D L, HU S Y, et al. Environmental research on remediation of cd-contaminated soil by electrokinetic remediation[J]. Chemosphere, 2016, 144: 1823-1830. doi: 10.1016/j.chemosphere.2015.09.077

    [19]

    HUANG C H, YUAN C, WU M H, et al. Electrochemical degradation of ibuprofen-contaminated soils over Fe/Al oxidation electrodes[J]. Science of The Total Environment, 2018, 640: 1205-1213.

    [20]

    SHU J, SUN X, LIU R, et al. Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents[J]. Ecotoxicology and Environmental Safety, 2019, 171: 523-529. doi: 10.1016/j.ecoenv.2019.01.025

    [21]

    CHEN W, KIRKELUND G M, JENSEN P E, et al. Electrodialytic extraction of Cr from water-washed MSWI fly ash by changing pH and redox conditions[J]. Waste Management, 2018, 71: 215-223. doi: 10.1016/j.wasman.2017.09.035

    [22]

    KUMAR V, CHITHRA K. Removal of Cr (VI) from spiked soils by electrokinetics[J]. Research Journal of Chemistry and Environment, 2013, 17(8): 52-59.

  • 期刊类型引用(4)

    1. 王艳,薛逸翔,朱鹏. 电动联合渗透反应屏障修复污染土壤的研究进展. 安全与环境学报. 2024(01): 330-344 . 百度学术
    2. 周细霞,刘朝淑,孙荣国. Fe(II)改性蒙脱石对土壤汞的吸附固定机理探究. 贵州师范大学学报(自然科学版). 2024(04): 63-74 . 百度学术
    3. 王艳,张李奕岚,朱鹏,王恒宇. 电动法去除污染土中重金属铬的试验研究. 安全与环境学报. 2024(08): 3251-3259 . 百度学术
    4. 李宗春,郭苗章,谌伟艳. 某废弃矿山重金属污染土壤治理约束优化研究. 环境科学与管理. 2023(05): 71-75 . 百度学术

    其他类型引用(3)

图(7)  /  表(3)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  23
  • PDF下载量:  90
  • 被引次数: 7
出版历程
  • 收稿日期:  2020-07-21
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-07-31

目录

    /

    返回文章
    返回