• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

粗粒土三轴试验橡皮膜嵌入量测量方法研究

徐卫卫, 陈生水, 傅中志, 吉恩跃

徐卫卫, 陈生水, 傅中志, 吉恩跃. 粗粒土三轴试验橡皮膜嵌入量测量方法研究[J]. 岩土工程学报, 2021, 43(8): 1536-1541. DOI: 10.11779/CJGE202108019
引用本文: 徐卫卫, 陈生水, 傅中志, 吉恩跃. 粗粒土三轴试验橡皮膜嵌入量测量方法研究[J]. 岩土工程学报, 2021, 43(8): 1536-1541. DOI: 10.11779/CJGE202108019
XU Wei-wei, CHEN Sheng-shui, FU Zhong-zhi, JI En-yue. Measuring method for membrane penetration capacity of coarse-grained soil in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1536-1541. DOI: 10.11779/CJGE202108019
Citation: XU Wei-wei, CHEN Sheng-shui, FU Zhong-zhi, JI En-yue. Measuring method for membrane penetration capacity of coarse-grained soil in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1536-1541. DOI: 10.11779/CJGE202108019

粗粒土三轴试验橡皮膜嵌入量测量方法研究  English Version

基金项目: 

国家重点研发计划项目 2018YFC1508602

国家自然科学基金项目 51779152

国家自然科学基金项目 U1765203

详细信息
    作者简介:

    徐卫卫(1989— ),男,博士研究生,主要从事粗颗粒料力学特性试验方面的研究工作。E-mail:xuweiwei@live.cn

    通讯作者:

    陈生水, E-mail:sschen@nhri.cn

  • 中图分类号: TU43

Measuring method for membrane penetration capacity of coarse-grained soil in triaxial tests

  • 摘要: 粗粒土试验的橡皮膜嵌入效应使得试样体积变形测量结果失真,从而影响其强度变形指标测量精度。为此,在同一试验仪器上开展了多组不同直径试样粗粒土的等向固结三轴试验,分析了橡皮膜的嵌入量的变化规律和影响因素,在此基础上提出了一个计算粗粒土橡皮膜嵌入量的经验公式。研究表明,橡皮膜的嵌入量随围压的增大而增大,与其围压大体呈幂函数关系。相同围压下,随着试样直径的增加,橡皮膜的嵌入量占总体变的比例减小;试样直径相同时,围压变化对橡皮膜嵌入量占总体变比例的影响明显小于试样直径变化的影响,且随着试样直径的增大,影响逐渐降低。因此,粗粒土的强度变形试验应尽可能采用较大直径的试样进行,以降低橡皮膜嵌入量对其试验结果的影响。由于粗粒土的母岩性质和级配变化较大,既有橡皮膜嵌入量计算公式将明显低估堆石料试样的橡皮膜嵌入量,建议采用本文提出的方法对粗粒土试样橡皮膜嵌入量进行估算。
    Abstract: The membrane penetration effects displayed in the coarse-grained soil tests will distort the measurement of volume deformation of samples, thereby affecting the measuring accuracy of strength and deformation index. To this end, by using the same test apparatus, multiple series of isotropic consolidation triaxial tests on the samples of coarse-grained soil with different diameters are implemented. The changing rules of membrane penetration capacity and the related impact factors are analyzed, and an empirical formula is proposed to calculate the membrane penetration capacity of coarse-grained soil. It is shown that the membrane penetration capacity increases with the increase of the confining pressure, and the relationship roughly follows a power function. Under the same confining pressure, with the increase of the sample diameter, the capacity of membrane penetration decreases. The influences of the confining pressure on the membrane penetration capacity are significantly smaller than those of sample size which gradually decreases as the sample diameter increases. Therefore, the strength and deformation tests on coarse-grained soil should be carried out by preparing larger-diameter samples, so that the influences of the membrane penetration effects can be greatly reduced. Due to the great changes in the nature and gradation of coarse-grained parent rock, the existing formulas for the membrane penetration capacity will significantly underestimate the membrane penetration effects of rock-fill samples. It is recommended to use the proposed method to estimate the membrane penetration capacity of coarse-grained soil.
  • 图  1   围压与排水体积关系示意图

    Figure  1.   Curves of confining pressure versus drainage volume

    图  2   橡皮膜单位面积嵌入量与试样直径关系

    Figure  2.   Relationship between per unit area membrane penetration and diameter

    图  3   三轴试验仪器底盘装置

    Figure  3.   Chassis apparatus of triaxial tests

    图  4   试验级配曲线

    Figure  4.   Grain-size distribution curve of tests

    图  5   试验成样实景图

    Figure  5.   Pictures of preparation process of samples

    图  6   围压–排水量关系曲线

    Figure  6.   Relationship between confining pressure and drainage volume

    图  7   ΔVT(P)AmD关系图

    Figure  7.   Relationship between ΔVT(P)Am and D

    图  8   单位面积嵌入量与围压拟合曲线

    Figure  8.   Fitting curves of per unit area membrane penetration and confining pressure

    图  9   单位嵌入量计算结果比较

    Figure  9.   Comparison of unit membrane penetration capacities

    表  1   材料基本参数

    Table  1   Basic parameters of materials

    材料颗粒相对质量密度G孔隙比e试验干密度ρd/(g·cm-3)平均粒径dg/mm
    堆石料2.700.591.702
    下载: 导出CSV

    表  2   不同直径与不同围压下橡皮膜嵌入量占比

    Table  2   Penetration proportions under different diameters and confining pressures  (%)

    围压/kPa直径/mm
    100150200250300
    10032.125.617.216.113.7
    20039.429.421.120.515.9
    30033.527.420.318.814.6
    40032.125.619.817.014.0
    60030.823.317.515.113.0
    下载: 导出CSV
  • [1]

    NEWLAND P L, ALLELY B H. Volume changes in drained taixial tests on granular materials[J]. Géotechnique, 1957, 7(1): 17-34. doi: 10.1680/geot.1957.7.1.17

    [2]

    NEWLAND P L, ALLELY B H. Volume changes during undrained triaxial tests on saturated dilatant granular materials[J]. Géotechnique, 1959, 9(4): 174-182. doi: 10.1680/geot.1959.9.4.174

    [3]

    RAJU V S, VENKATARAMANA K. Undrained triaxial tests to assess liquefaction potential of sands: effect of membrane penetration[C]//Proc Int Symp on Soils under Cyclic and Transient Loading Swansea, 1980, Wales.

    [4]

    KIEKBUSCH M, SCHUPPENER B. Membrane penetration and its effects on pore pressures[J]. Journal of the Geotechnical Engineering Division, 1977, 103(11): 1267-1280. doi: 10.1061/AJGEB6.0000519

    [5]

    EVANS M D. Density changes during undrained loading-membrane compliance[J]. Journal of Geotechnical Engineering, 1992, 118(12): 1924-1936 doi: 10.1061/(ASCE)0733-9410(1992)118:12(1924)

    [6]

    SUTTS L D, SHEAHAN T C, TSOI W Y, et al. Membrane penetration remedy for the testing of lightly cemented scrap rubber tire Chips[J]. Geotechnical Testing Journal, 2009, 32(1): 55-63.

    [7]

    KNODEL P C, CHOI J W, ISHIBASHI I. An experimental method for determining membrane penetration[J]. Geotechnical Testing Journal, 1992, 15(4): 413-417. doi: 10.1520/GTJ10258J

    [8]

    LADE P V, HERNANDEZ S B. Membrane penetration effects in undrained tests[J]. Journal of the Geotechnical Engineering Division, 1977, 103(2): 109-125. doi: 10.1061/AJGEB6.0000377

    [9]

    RAGHUNANDAN M E, SHARMA J S, PRADHAN B. A review on the effect of rubber membrane in triaxial tests[J]. Arabian Journal of Geosciences, 2015, 8(5): 3195-3206. doi: 10.1007/s12517-014-1420-0

    [10]

    KRAMER S L, SIVANESWARAN N. Stress-path-dependent correction for membrane penetration[J]. Journal of Geotechnical Engineering, 1989, 115(12): 1787-1804. doi: 10.1061/(ASCE)0733-9410(1989)115:12(1787)

    [11]

    SIVATHAYALAN S, VAID Y P. Truly undrained response of granular soils with no membrane-penetration effects[J]. Canadian Geotechnical Journal, 1998, 35(5): 730-739. doi: 10.1139/t98-048

    [12]

    RAMANA K V, RAJU V S. Constant-volume triaxial tests to study the effects of membrane penetration[J]. Geotechnical Testing Journal, 1981, 4(3): 117-122. doi: 10.1520/GTJ10777J

    [13]

    TOKIMATSU K, NAKAMURA K. A Liquefaction test without membrane penetration effects[J]. Soils and Foundations, 1986, 26(4): 127-138. doi: 10.3208/sandf1972.26.4_127

    [14]

    NICHOLSON P G, SEED R B, ANWAR H A. Elimination of membrane compliance in undrained triaxial testing II. Mitigation by injection compensation[J]. Canadian Geotechnical Journal, 1993, 30(5): 739-746. doi: 10.1139/t93-066

    [15]

    ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. An evaluation of test data for selecting a yield criterion for soils[M]//Laboratory Shear Testing of Soil, West Conshohocken: ASTM International, 1964: 111-128.

    [16]

    EL-SOHBY M A, ANDRAWES K Z. Deformation characteristics of granular materials under hydrostatic compression[J]. Canadian Geotechnical Journal, 1972, 9(4): 338-350. doi: 10.1139/t72-038

    [17]

    RAJU V S, SADASIVAN S K. Membrane penetration in triaxial tests on sands[J]. Journal of the Geotechnical Engineering Division, 1974, 100(4): 482-489. doi: 10.1061/AJGEB6.0000042

    [18]

    BOPP P A, LADE P V. Membrane penetration in granular materials at high pressures[J]. Geotechnical Testing Journal, 1997, 20(3): 272-278.

    [19] 吉恩跃, 朱俊高, 王青龙, 等. 粗颗粒土橡皮膜嵌入试验研究[J]. 岩土工程学报, 2018, 40(2): 346-352. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802021.htm

    JI En-yue, ZHU Jun-gao, WANG Qing-long, et al. Experiment of membrane penetration on coarse grained soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 346-352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802021.htm

    [20]

    ETRIS S F, LIRB K C, SISCAV K, et al. The membrane effect in triaxial testing of granular soils[J]. Journal of Testing and Evaluation, 1973, 1(1): 37-41. doi: 10.1520/JTE11599J

    [21]

    VAID Y P, NEGUSSEY D. A critical assessment of membrane penetration in the triaxial test[J]. Geotechnical Testing Journal, 1984, 7(2): 70-76. doi: 10.1520/GTJ10595J

    [22] 吉恩跃, 陈生水, 傅中志, 等. 直接测量三轴试验橡皮膜嵌入量的装置及其测量方法: CN109060543B[P]. 2018-12-21.

    JI En-yue, CHEN Sheng-shui, FU Zhong-zhi, et al. Device for Directly Measuring Embedding Amount of Triaxial Rubber Membrance and Measuring Method Thereof: CN109060543B[P]. 2018-12-21. (in Chinese)

    [23] 龚选. 粗粒土强度特性及三轴试验橡皮膜影响的研究[D]. 南京: 河海大学, 2014.

    GONG Xuan. Test Study on Effects of Rubber Membrane Constraint in Triaxial Test and Strength Characteristics of Coarse-Grained Soil[D]. Nanjing: Hohai University, 2014. (in Chinese)

    [24] 张丙印, 吕明治, 高莲士. 粗粒料大型三轴试验中橡皮膜嵌入量对体变的影响及校正[J]. 水利水电技术, 2003, 34(2): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ200302010.htm

    ZHANG Bing-yin, LÜ Ming-zhi, GAO Lian-shi. Correction of membrane penetration in large-scale triaxial tests for granular materials[J]. Water Resources and Hydropower Engineering, 2003, 34(2): 30-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ200302010.htm

    [25]

    MOLENKAMP F, LUGER H J. Modelling and minimization of membrane penetration effects in tests on granular soils[J]. Géotechnique, 1981, 31(4): 471-486. doi: 10.1680/geot.1981.31.4.471

    [26]

    BALDI G, NOVA R. Membrane penetration effects in triaxial testing[J]. Journal of Geotechnical Engineering, 1984, 110(3): 403-420. doi: 10.1061/(ASCE)0733-9410(1984)110:3(403)

    [27] 刘荟达, 袁晓铭, 王鸾, 等. 宽级配砾性土橡皮膜嵌入量计算新方法[J]. 岩石力学与工程学报, 2020, 39(4): 804-816. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004014.htm

    LIU Hui-da, YUAN Xiao-ming, WANG Luan, et al. A new calculation method for membrane penetration in wide-graded gravelly soils[J]. Chinese Journal of Rock Mechanics Engineering, 2020, 39(4): 804-816. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004014.htm

图(9)  /  表(2)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  35
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-27
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-07-31

目录

    /

    返回文章
    返回