An improved model for shield tunnels with double-layer linings and its application in engineering
-
摘要: 提出一种改进的盾构隧道双层衬砌计算模型,该模型可以反映接头抗弯刚度的非线性以及管片与二次衬砌接触面压剪弹簧失效机理。采用该模型对狮子洋隧道衬砌的力学行为进行了分析,结果表明:①管片结构最大正负弯矩随接头抗弯刚度增大而增大,而二次衬砌内力及管片结构最大轴力受接头抗弯刚度影响较小;②若不考虑管片与二次衬砌接触面的接触弹簧失效,将会使得计算结果量值偏大;③当盾构隧道所处岩层均匀时(t/D=0或1,t为结构范围内软弱层的厚度,D为隧道直径),全环各个位置处接头刚度值差别不大,当岩层不均匀时,接头抗弯刚度的取值差异分布显著;④径向弹簧、切向弹簧受力的最大值与平均值随着t/D的增加呈增大的趋势。Abstract: An improved model for shield tunnels with double-layer linings is proposed. It can reflect the nonlinear characteristic of bending stiffness of segment joints and the failure mechanism of compression and shear springs between segments and secondary linings. The internal force of linings of Shiziyang tunnel is analyzed using this model. The results show that: (1) The increment of bending stiffness of the segment joints can increase the values of the maximum positive and negative bending moments of the segments, while it has slight effect on the internal force of the secondary linings and the maximum axial force of the segments. (2) The internal force is larger than that in reality if the failure mechanism of springs between segments and secondary linings is not considered in the model. (3) The bending stiffness of joints varies slightly if the structure is situated in uniform strata (t/D=0 or 1, t is the distance from the tunnel top to the stratum interface, D is the diameter of tunnel), while its value varies sharply if the structure is situated in nonuniform strata. (4) The maximum and average forces of compression and shear springs will increase with the increment of t/D.
-
Keywords:
- shield tunnel /
- double-layer lining /
- bending stiffness /
- interface /
- spring
-
-
图 1 常用计算模型[12]
Figure 1. Existing models
图 7 接头抗弯刚度与内力关系[16]
Figure 7. Relationship between bending stiffness of joints and internal force
表 1 两种模型内力值
Table 1 Internal forces of two models
项目 管片衬砌内力 二次衬砌内力 Mmax/(kN·m) Mmin/(kN·m) Nmax /kN Mmax/(kN·m) Mmin/(kN·m) Nmax/kN 模型1 520.08 -475.56 2270.1 379.32 -341.66 1309.0 模型2 470.83 -666.35 2012.4 311.01 -267.02 1410.6 表 2 地层力学参数
Table 2 Mechanical parameters of strata
类别 变形模量E0/MPa 天然重度γ/(kN·m-3) 黏聚力c/kPa 内摩擦角φ/(°) 黏性土层 4.6 19.2 17 10.0 泥质粉砂岩层 8820.0 26.5 6270 35.0 表 3 双层衬砌材料参数
Table 3 Material parameters of two-layer linings
类型 混凝土强度等级 弹性模量/GPa 密度/(kg·m-3) 泊松比 管片衬砌 C50 34.5 2450 0.2 二次衬砌 C30 30.0 2450 0.2 -
[1] 张凤祥, 朱合华, 傅德明. 盾构隧道[M]. 北京: 人民交通出版社, 2004: 1-20. ZHANG Feng-xiang, ZHU He-hua, FU De-ming. Shiled Tunnlling Method[M]. Beijing: China Communications Press, 2004: 1-20. (in Chinese)
[2] 李宇杰, 何平, 秦东平. 盾构隧道管片纵缝错台的影响分析[J]. 工程力学, 2012, 29(11): 277-282. doi: 10.6052/j.issn.1000-4750.2011.04.0239 LI Yu-jie, HE Ping, QIN Dong-ping. Influence analysis on longitudinal dislocation for shield tunnel segment[J]. Engineering Mechanics, 2012, 29(11): 277-282. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.04.0239
[3] 刘印, 张冬梅, 黄宏伟. 盾构隧道局部长期渗水对隧道变形及地表沉降的影响分析[J]. 岩土力学, 2013, 34(1): 291-304. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301042.htm LIU Yin, ZHANG Dong-mei, HUANG Hong-wei. Influence of long-term partial drainage of shield tunnel on tunnel deformation and surface settlement[J]. Rock and Soil Mechanics, 2013, 34(1): 291-304. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301042.htm
[4] 刘曙光. 盾构隧道混凝土管片的承载力退化模型及其试验研究[D]. 南京: 南京航空航天大学, 2012. LIU Shu-guang. Study on Carrying Capacity Deteriorating Model and Experimental Research on Shield Tunnel Concrete[D]. Nangjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
[5] 周济民. 水下盾构法隧道双层衬砌结构力学特性[D]. 成都: 西南交通大学, 2012. ZHOU Ji-min. Research on Mechanical Behavior of Double-Layer Lining Strunture for Underwater Shield Tunnel[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
[6] 晏启祥, 姚超凡, 何川, 等. 水下盾构隧道双层衬砌分析模型的比较研究[J]. 铁道学报, 2015, 37(12): 114-120. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201512021.htm YAN Qi-xiang, YAO Chao-fang, HE Chuan, et al. Comparative study of analysis models for underwater shield tunnel with double linings[J]. Journal of the China Railway Society, 2015, 37(12): 114-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201512021.htm
[7] 王国富, 路林海, 唐卓华. 济南地铁盾构隧道管片选型研究[M]//第八届中日盾构隧道交流会论文集. 南京: 河海大学出版社, 2015: 6-15. WANG Guo-fu, LU Lin-hai, TANG Zhuo-hua. Segment selection research on Ji'nan metro shield tunnel[M]//The Eighth China Japan Symposium on Shield Tunnel. Nanjing: Hohai University Press, 2015, 6-15. (in Chinese)
[8] Working Group No.2, International Tunneling Association. Guidelines for the design of shield tunnel lining[J]. Tunneling and Underground Space Technology, 2000, 15(3): 303-331. doi: 10.1016/S0886-7798(00)00058-4
[9] 地铁设计规范:GB50157—2003[S]. 2003. Code for Design of Metro: GB50157—2003[S]. 2003. (in Chinese)
[10] 赵德安, 雷晓燕, SWOBODA G. 单、双层衬砌隧道的非线性有限元分析[J]. 中国公路学报, 2003, 16(1): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200301015.htm ZHAO De-an, LEI Xiao-yan, SWOBODA G. Nonlinear FEM analysis for single and double lining tunnels[J]. China Journal of Highway and Transport, 2003, 16(1): 62-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200301015.htm
[11] 晏启祥, 程曦, 何川, 等. 水压条件下盾构隧道双层衬砌力学特性分析[J]. 铁道工程学报, 2010(9): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201009012.htm YAN Qi-xiang, CHENG Xi, HE Chuan, et al. Analysis of mechanical properties of double-layered lining of shield tunnel under water pressure[J]. Journal of Railway Engineering Society, 2010(9): 55-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201009012.htm
[12] 姚超凡, 晏启祥, 何川, 等. 一种改进的盾构隧道双层衬砌分析模型及其应用研究[J]. 岩石力学与工程学报, 2014, 33(1): 80-89. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401009.htm YAO Chao-fan, YAN Qi-xiang, HE Chuan, et al. An improved analysis model for shield tunnel with double-layer lining and its applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 80-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401009.htm
[13] 吴全立, 王梦恕, 董新平. 盾构管片接头非线性转动刚度研究[J]. 土木工程学报, 2014, 47(4): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201404016.htm WU Quan-li, WANG Meng-shu, DONG Xin-ping. Study on nonlinear rotational stiffness of shield segment joint[J]. China Civil Engineering Journal, 2014, 47(4): 109-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201404016.htm
[14] 张冬梅, 樊振宇, 黄宏伟. 考虑接头力学特性的盾构隧道衬砌结构计算方法研究[J]. 岩土力学, 2010, 31(8): 2546-2552. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201008033.htm ZHANG Dong-mei, FAN Zhen-yu, HUANG Hong-wei. Calculation method of shield tunnel lining considering mechanical characteristics of joints[J]. Rock and Soil Mechanics, 2010, 31(8): 2546-2552. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201008033.htm
[15] 徐国文, 王士民, 汪冬兵. 基于接头抗弯刚度非线性的壳-弹簧-接触-地层模型的建立[J]. 工程力学, 2016, 33(12): 158-166. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201612020.htm XU Guo-wen, WANG Shi-min, WANG Dong-bing. Shell-spring-contact-ground model based on segment joint stiffness nonlinearity[J]. Engineering Mechanics, 2016, 33(12): 158-166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201612020.htm
[16] Itasca Consulting Group. Inc FLAC3D User’s Manual, Version3.0[R]. Itasca Consulting Group, 2004.
[17] 封坤. 大断面水下盾构隧道管片衬砌结构的力学行为研究[D]. 成都: 西南交通大学, 2012: 45-78. FENG Kun. Research on Mechanical Behavior of Segmental Lining Structure of Underwater Shield Tunnel with Large Cross-section[D]. Chengdu: Southwest Jiaotong University, 2012: 45-78. (in Chinese)
[18] 张厚美, 过迟, 吕国梁. 盾构压力隧洞双层衬砌的力学模型研究[J]. 水利学报, 2001, 32(4): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200104004.htm ZHANG Hou-mei, GUO Chi, LU Guo-liang. Mechanical model for shield pressure tunnel with secondary linings[J]. Journal of Hydraulic Engineering, 2001, 32(4): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200104004.htm
[19] 曾东洋, 何川. 地铁盾构隧道管片接头抗弯刚度的数值计算[J]. 西南交通大学学报, 2004, 39(6): 744-748. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200406010.htm ZENG Dong-yang, HE Chuan. Numerical simulation of segment joint bending stiffness of metro shield tunnel[J]. Journal of Southwest Jiaotong University, 2004, 39(6): 744-748. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200406010.htm
[20] CAVALARO S H P, AGUADO A. Packer behavior under simple and coupled stresses[J]. Tunnelling and Underground Space Technology, 2012, 28: 159-173.
[21] DO N A, DIAS D, ORESTE P, et al. 2D numerical investigation of segmental tunnel lining behavior[J]. Tunnelling and Underground Space Technology, 2013, 37: 115-127.
[22] 佐久门彰三, 石田智郎. 一次覆工、二次覆工门のせん断特性を考虑したシ一ルドトンネルの轴刚性评价[C]//土木学会论文集, 1990(424): 251-259. SHOZO Saku, Ishida TOMORO. The hgidity of the shield tunnel considering the shear characteristics of the primary lining and the secondary lining[C]//Proceeding of Civil Society, 1990(424): 251-259. (in Japanese)
-
期刊类型引用(5)
1. 雷国钦,卢勇,戴泽宇,陈青林,张小普. 细粒级尾砂沉降规律及坝体稳定性研究. 有色金属(中英文). 2025(04): 660-667 . 百度学术
2. 李庚辉,肖启飞,侯英剑. 某选厂高浓度铁尾矿沉积特性试验. 现代矿业. 2025(04): 217-220 . 百度学术
3. 周罕,付俊,陈永贵,余璨,李嘉淇,李艳林. 沟谷上游式尾矿库的水力分选及沉积规律研究. 矿业研究与开发. 2023(08): 147-151 . 百度学术
4. 陈青林,戴泽宇,王晓军,李祖贵,谢锦程,廖敏敏. 不同细粒含量尾矿沉降规律与其沉积体孔隙分布特征研究. 中国安全生产科学技术. 2023(12): 79-85 . 百度学术
5. 李全明,段志杰,于玉贞,师海,李振涛. 尾矿坝沉积结构特征与性能演化规律研究进展. 中国安全生产科学技术. 2022(02): 6-19+2 . 百度学术
其他类型引用(4)