• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

含砾滑带土残余强度与剪切面粗糙度的细观响应机制

任三绍, 张永双, 徐能雄, 吴瑞安

任三绍, 张永双, 徐能雄, 吴瑞安. 含砾滑带土残余强度与剪切面粗糙度的细观响应机制[J]. 岩土工程学报, 2021, 43(8): 1473-1482. DOI: 10.11779/CJGE202108012
引用本文: 任三绍, 张永双, 徐能雄, 吴瑞安. 含砾滑带土残余强度与剪切面粗糙度的细观响应机制[J]. 岩土工程学报, 2021, 43(8): 1473-1482. DOI: 10.11779/CJGE202108012
REN San-shao, ZHANG Yong-shuang, XU Neng-xiong, WU Rui-an. Mesoscopic response mechanism of shear surface roughness and residual strength in gravelly sliding zone soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1473-1482. DOI: 10.11779/CJGE202108012
Citation: REN San-shao, ZHANG Yong-shuang, XU Neng-xiong, WU Rui-an. Mesoscopic response mechanism of shear surface roughness and residual strength in gravelly sliding zone soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1473-1482. DOI: 10.11779/CJGE202108012

含砾滑带土残余强度与剪切面粗糙度的细观响应机制  English Version

基金项目: 

国家自然科学基金重点项目 41731287

国家自然科学基金重大专项项目 41941017

详细信息
    作者简介:

    任三绍(1991— ),男,博士研究生,主要从事工程地质与地质灾害研究工作。E-mail:rensanshao123@163.com

    通讯作者:

    张永双, E-mail:zhys100@sohu.com

  • 中图分类号: TU433

Mesoscopic response mechanism of shear surface roughness and residual strength in gravelly sliding zone soils

  • 摘要: 含砾滑带土的力学性质与剪切面细观结构紧密相关,定量化表征剪切面的粗糙度对于揭示含砾滑带土残余强度变化的细观机制具有重要意义。基于反复直剪试验和高精度三维激光扫描技术,对含砾滑带土剪切面的粗糙度进行了定量刻画,并剖析了其与残余强度参数之间的关系,结果表明:滑带土剪切面摩擦系数与粗糙度呈较明显的相关性;砾石是滑带土残余强度变化的内在因素,垂向应力和水是残余强度变化的外部因素。含砾滑带土的残余强度由剪切面砾石的接触性质和剪切面的起伏程度共同决定:砾石含量决定了咬合摩擦接触面的数量,随含石量增大,剪切面中咬合摩擦接触面增加;砾石最大粒径控制了接触面积和夹角,粒径越大,咬合摩擦越大;垂向应力的压实作用和水的软化作用有助于咬合摩擦向滑动摩擦转化,减小滑带土的残余强度。
    Abstract: The mechanical properties of the gravelly sliding zone soils are closely related to the meso-structure of the shear surface. The quantitative characterization of shear surface roughness is of great significance to revealing the meso-mechanism of change of the residual strength in the gravelly sliding zone soils. Based on the reversal direct shear tests and the high-resolution 3D laser scanning technology, the shear surface roughness of the gravelly sliding zone soils is quantitatively characterized, and the relationship between the roughness and the residual strength parameters is analyzed. The results show that there is a positive linear correlation between the friction coefficient and the shear surface roughness. The gravels are the internal factor of the change of the residual strength of sliding zone soils, and vertical stress and water are the external factors. The residual strength of the gravelly sliding zone soils is determined by the contact properties of gravels on the shear surface and the shear surface undulation. The number of occlusive friction contact surfaces depends on the gravel content, and with the increase of gravels content, the occlusive friction interface increases. The maximum particle size of gravel controls the contact area and angle, and the larger the particle size, the greater the occlusive friction. The soil compaction under normal stress and the softening of fine-grained soil due to water are helpful to the transformation of occlusive friction to sliding friction, thus leading to lower residual strength of the sliding zone soils.
  • 感谢中国地质科学院地质力学研究所郭长宝研究员、成都理工大学裴向军教授、崔圣华博士和东华大学杨爱武教授在野外调查和试验过程中给予的指导和帮助,感谢各位专家及编辑在审稿过程中对本文提出的宝贵修改意见。
  • 图  1   江顶崖滑坡滑带土发育特征

    Figure  1.   Development characteristics of sliding zone soils in Jiangdingya

    图  2   剪切面三维形貌提取流程

    Figure  2.   Extraction process of 3D morphology of shear surface

    图  3   残余强度参数与砾石含量、最大粒径的关系

    Figure  3.   Relationship among residual strength parameters, gravel content and maximum particle size

    图  4   剪切面摩擦系数与粗糙度的关系

    Figure  4.   Relationship between friction coefficient and roughness of shear surface

    图  5   不同最大粒径下剪切面等值线图(饱和,300 kPa)

    Figure  5.   Contour map of shear surface morphology under different maximum particle sizes (saturated, 300 kPa)

    图  6   剪切面摩擦系数、粗糙度与砾石最大粒径的关系

    Figure  6.   Relationship among friction coefficient, roughness of shear surface and maximum particle size of gravels

    图  7   剪切面摩擦系数、粗糙度与砾石含量的关系(饱和)

    Figure  7.   Relationship among friction coefficient, roughness and gravels content (saturated)

    图  8   不同垂向应力下剪切面等值线图(饱和,砾石含量30%)

    Figure  8.   Contour map of shear surface morphology under different normal stresses (saturated, gravel content of 30%)

    图  9   剪切面摩擦系数、粗糙度与垂向应力的关系

    Figure  9.   Relationship among friction coefficient, roughness and normal stress of shear surface

    图  10   不同状态下摩擦系数、粗糙度与垂向应力的关系(砾石含量30%)

    Figure  10.   Relationship among friction coefficient, roughness and normal stress under different states (gravel content of 30%)

    图  11   剪切面起伏形态概化模式图

    Figure  11.   Generalized model for shear surface fluctuation

    图  12   含砾滑带土剪切面中的砾石分布特征

    Figure  12.   Distribution characteristics of gravels on shear surface

    图  13   剪切面摩擦示意图

    Figure  13.   Schematic diagram of shear surface friction

    图  14   接触单元i受力示意图

    Figure  14.   Stress diagram of contact unit i

    表  1   滑带土基本物理力学指标

    Table  1   Basic physical and mechanical indexes of sliding zone soils

    孔隙比e0土粒相对质量密度Gs  干密度/(g·cm-3)塑限wL /%液限wP /%塑性指数IP  颗粒级配/%
    <0.005 mm0.005~0.075 mm0.075~2 mm>2 mm
    0.579~0.6732.72~2.731.86~1.9615.4~16.734.2~35.818.8~20.414~1926~3232~3615~24
    下载: 导出CSV

    表  2   滑带土剪切试验方案

    Table  2   Schemes for shear tests on sliding zone soils

    试验编号状态含水率/%样品颗粒配比/%垂向应力/kPa试验编号状态含水率/%样品颗粒配比/%垂向应力/kPa
    <2 mm2~5 mm5~10 mm10~20 mm<2 mm2~5 mm5~10 mm10~20 mm
    JDY-01天然13.57018120100JDY-23饱和24.790640500
    JDY-02300JDY-24700
    JDY-03500JDY-25天然13.5100000100
    JDY-04700JDY-26300
    JDY-05饱和24.77018120100JDY-27500
    JDY-06300JDY-28700
    JDY-07500JDY-29饱和24.7100000100
    JDY-08700JDY-30300
    JDY-09天然13.5801280100JDY-31500
    JDY-10300JDY-32700
    JDY-11500JDY-33饱和24.7703000100
    JDY-12700JDY-34300
    JDY-13饱和24.7801280100JDY-35500
    JDY-14300JDY-36700
    JDY-15500JDY-37饱和24.77015150100
    JDY-16700JDY-38300
    JDY-17天然13.590640100JDY-39500
    JDY-18300JDY-40700
    JDY-19500JDY-41饱和24.770101010100
    JDY-20700JDY-42300
    JDY-21饱和24.790640100JDY-43500
    JDY-22300JDY-44700
    下载: 导出CSV
  • [1] 张永双, 郭长宝, 周能娟. 金沙江支流冲江河巨型滑坡及其局部复活机理研究[J]. 岩土工程学报, 2013, 35(3): 445-453. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201303008.htm

    ZHANG Yong-shuang, GUO Chang-bao, ZHOU Neng-juan. Characteristics of Chongjianghe landslide at a branch of Jinsha River and its local reactivation mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 445-453. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201303008.htm

    [2]

    WEN B P, JIANG X Z. Effect of gravel content on creep behavior of clayey soil at residual state: implication for its role in slow-moving landslides[J]. Landslides, 2017, 14(2): 559-576. doi: 10.1007/s10346-016-0709-3

    [3] 吴瑞安, 张永双, 郭长宝, 等. 川西松潘上窑沟古滑坡复活特征及危险性预测研究[J]. 岩土工程学报, 2018, 40(9): 1659-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809014.htm

    WU Rui-an, ZHANG Yong-shuang, GUO Chang-bao, et al. Reactivation characteristics and hazard prediction of Shangyaogou ancient landslide in Songpan County of Sichuan Province[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1659-1667. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809014.htm

    [4] 张永双, 吴瑞安, 郭长宝, 等. 古滑坡复活问题研究进展与展望[J]. 地球科学进展, 2018, 33(7): 728-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201807006.htm

    ZHANG Yong-shuang, WU Rui-an, GUO Chang-bao, et al. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science, 2018, 33(7): 728-740. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201807006.htm

    [5] 黄晓虎, 易武, 龚超, 等. 开挖致使古滑坡复活变形机理研究[J]. 岩土工程学报, 2020, 42(7): 1276-1285. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007015.htm

    HUANG Xiao-hu, YI Wu, GONG Chao, et al. Reactivation and deformation mechanism of ancient landslides by excavation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1276-1285. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007015.htm

    [6] 刘虎虎, 缪海波, 陈志伟, 等. 三峡库区侏罗系顺层滑坡滑带土的剪切蠕变特性[J]. 岩土工程学报, 2019, 41(8): 1573-1580. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908027.htm

    LIU Hu-hu, MIAO Hai-bo, CHEN Zhi-wei, et al. Shear creep behaviors of sliding-zone soil of bedding landslide in Jurassic stratum in Three Gorges Reservoir area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1573-1580. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908027.htm

    [7]

    CHEN X P, LIU D. Residual strength of slip zone soils[J]. Landslides, 2014, 11(2): 305-314. doi: 10.1007/s10346-013-0451-z

    [8] 李远耀, 殷坤龙, 柴波, 等. 三峡库区滑带土抗剪强度参数的统计规律研究[J]. 岩土力学, 2008, 29(5): 1419-1424, 1429. doi: 10.3969/j.issn.1000-7598.2008.05.053

    LI Yuan-yao, YIN Kun-long, CHAI Bo, et al. Study on statistical rule of shear strength parameters of soil in landslide zone in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2008, 29(5): 1419-1424, 1429. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.05.053

    [9] 胡瑞林, 李晓, 王宇, 等. 土石混合体工程地质力学特性及其结构效应研究[J]. 工程地质学报, 2020, 28(2): 255-281. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002008.htm

    HU Rui-lin, LI Xiao, WANG Yu, et al. Research on engineering geomechanics and structural effect of soil-rock mixture[J]. Journal of Engineering Geology, 2020, 28(2): 255-281. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002008.htm

    [10]

    LI Y R, AYDIN A. Shear zone structures and stress fluctuations in large ring shear tests[J]. Engineering Geology, 2013, 167: 6-13. doi: 10.1016/j.enggeo.2013.10.001

    [11] 刘动, 陈晓平. 滑带土残余强度的室内试验与参数反分析[J]. 华南理工大学学报(自然科学版), 2014, 42(2): 81-87. doi: 10.3969/j.issn.1000-565X.2014.02.013

    LIU Dong, CHEN Xiao-ping. Laboratory test and parameter back analysis of residual strength of slip zone soils[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(2): 81-87. (in Chinese) doi: 10.3969/j.issn.1000-565X.2014.02.013

    [12] 徐文杰, 王识. 基于真实块石形态的土石混合体细观力学三维数值直剪试验研究[J]. 岩石力学与工程学报, 2016, 35(10): 2152-2160. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201610022.htm

    XU Wen-jie, WANG Shi. Meso- mechanics of soil-rock mixture with real shape of rock blocks based on 3D numerical direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2152-2160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201610022.htm

    [13] 杜时贵. 简易纵剖面仪及其在岩体结构面粗糙度系数研究中的应用[J]. 地质科技情报, 1992, 11(3): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199203020.htm

    DU Shi-gui. Simple profile instrument and its application to study joint roughness coefficient of rock[J]. Geological Science and Technology Information, 1992, 11(3): 91-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199203020.htm

    [14] 夏才初, 肖维民, 王伟, 等. 不同接触状态下节理三维组合形貌的计算方法[J]. 岩石力学与工程学报, 2010, 29(11): 2203-2210. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201011006.htm

    XIA Cai-chu, XIAO Wei-min, WANG Wei, et al. Calculation method for three-dimensional composite topography of joint under different contact conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(11): 2203-2210. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201011006.htm

    [15] 葛云峰, 唐辉明, 王亮清, 等. 天然岩体结构面粗糙度各向异性、尺寸效应、间距效应研究[J]. 岩土工程学报, 2016, 38(1): 170-179. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201601021.htm

    GE Yun-feng, TANG Hui-ming, WANG Liang-qing, et al. Anisotropy, scale and interval effects of natural rock discontinuity surface roughness[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 170-179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201601021.htm

    [16] 邓华锋, 肖瑶, 李建林, 等. 重复剪切作用下节理强度和形貌特征劣化规律[J]. 岩土工程学报, 2018, 40(增刊2): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2039.htm

    DENG Hua-feng, XIAO Yao, LI Jian-lin, et al. Degradation laws of joint strength and micro-morphology under repeated shear tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 183-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2039.htm

    [17] 彭守建, 岳雨晴, 刘义鑫, 等. 不同成因结构面各向异性特征及其剪切力学特性[J]. 岩土力学, 2019, 40(9): 3291-3299. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909001.htm

    PENG Shou-jian, YUE Yu-qing, LIU Yi-xin, et al. Anisotropic characteristics and shear mechanical properties of different genetic structural planes[J]. Rock and Soil Mechanics, 2019, 40(9): 3291-3299. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909001.htm

    [18] 许江, 瞿佳美, 刘义鑫, 等. 循环剪切荷载作用下充填对结构面剪切特性影响试验研究[J]. 岩土力学, 2019, 40(5): 1627-1637. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905002.htm

    XU Jiang, QU Jia-mei, LIU Yi-xin, et al. Influence of filling material on the behavior of joints under cyclic shear loading[J]. Rock and Soil Mechanics, 2019, 40(5): 1627-1637. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905002.htm

    [19]

    BAO H, ZHANG G B, LAN H X, et al. Geometrical heterogeneity of the joint roughness coefficient revealed by 3D laser scanning[J]. Engineering Geology, 2020, 265: 105415.

    [20] 刘新荣, 涂义亮, 王林枫, 等. 土石混合体的剪切面分形特征及强度产生机制[J]. 岩石力学与工程学报, 2017, 36(9): 2260-2274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709020.htm

    LIU Xin-rong, TU Yi-liang, WANG Lin-feng, et al. Fractal characteristics of shear failure surface and mechanism of strength generation of soil-rock aggregate[J]. Journal of Rock Mechanics and Engineering, 2017, 36(9): 2260-2274. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709020.htm

    [21] 杨忠平, 蒋源文, 李诗琪, 等. 土石混合体-基岩界面剪切力学特性试验研究[J]. 岩土工程学报, 2020, 42(10): 1947-1954. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010027.htm

    YANG Zhong-ping, JIANG Yuan-wen, LI Shi-qi, et al. Experimental study on shear mechanical properties of soil-rock mixture-bedrock interface[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1947-1954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010027.htm

    [22] 土工试验方法标准:GB/T50123—2019[S]. 2019.

    Standard for Soil Test Methods: GB/T50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [23] 陈世江, 朱万成, 王创业, 等. 岩体结构面粗糙度系数定量表征研究进展[J]. 力学学报, 2017, 49(2): 239-256. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201702001.htm

    CHEN Shi-jiang, ZHU Wan-cheng, WANG Chuang-ye, et al. Review of research progresses of the quantifying joint roughness coefficient[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 239-256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201702001.htm

    [24] 李化, 张正虎, 邓建辉, 等. 岩石节理三维表面形貌精细描述与粗糙度定量确定方法的研究[J]. 岩石力学与工程学报, 2017, 36(增刊2): 4066-4074. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2040.htm

    LI Hua, ZHANG Zheng-hu, DENG Jian-hui, et al. Precise description of rock joints 3D superficial morphology and the quantitative determination of 3D joint roughness coefficient[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 4066-4074. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2040.htm

    [25]

    WEN B P, AYDIN A, DUZGOREN-AYDIN N S, et al. Residual strength of slip zones of large landslides in the Three Gorges area, China[J]. Engineering Geology, 2007, 93(3/4): 82-98.

    [26]

    LI Y R, WEN B P, AYDIN A, et al. Ring shear tests on slip zone soils of three giant landslides in the Three Gorges Project area[J]. Engineering Geology, 2013, 154: 106-115.

    [27] 陈传胜, 张建敏, 文仕知. 基于有效垂直应力水平的滑带土强度参数适用性研究[J]. 岩石力学与工程学报, 2011, 30(8): 1705-1711. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201108025.htm

    CHEN Chuan-sheng, ZHANG Jian-min, WEN Shi-zhi. Study of applicability of strength parameters of sliding zone soil based on effective vertical stress level[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8): 1705-1711. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201108025.htm

    [28]

    EID H T, RABIE K H, WIJEWICKREME D. Drained residual shear strength at effective normal stresses relevant to soil slope stability analyses[J]. Engineering Geology, 2016, 204: 94-107.

    [29] 范志强, 唐辉明, 谭钦文, 等. 滑带土环剪试验及其对水库滑坡临滑强度的启示[J]. 岩土工程学报, 2019, 41(9): 1698-1706. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909016.htm

    FAN Zhi-qiang, TANG Hui-ming, TAN Qin-wen, et al. Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1698-1706. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909016.htm

    [30] 李维树, 邬爱清, 丁秀丽. 三峡库区滑带土抗剪强度参数的影响因素研究[J]. 岩土力学, 2006, 27(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200601010.htm

    LI Wei-shu, WU Ai-qing, DING Xiu-li. Study on influencing factors of shear strength parameters of slide zone clay in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2006, 27(1): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200601010.htm

    [31]

    MESRI G, HUVAJ-SARIHAN N. Residual shear strength measured by laboratory tests and mobilized in landslides[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2015, 138(5): 585-593.

    [32]

    SKEMPTON A W. Residual strength of clays in landslides, folded strata and the laboratory[J]. Géotechnique, 1985, 35(1): 3-18.

    [33] 李广信, 张丙印, 于玉贞. 土力学[M]. 2版. 北京: 清华大学出版社, 2013.

    LI Guang-xin, ZHANG Bing-yin, YU Yu-zhen. Soil Mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2013. (in Chinese)

    [34] 李广信. 漫话土力学[M]. 北京: 人民交通出版社, 2019.

    LI Guang-xin. Some Thoughts Concerning Soil Mechanics[M]. Beijing: China Communications Press, 2019. (in Chinese)

    [35] 杨继红, 董金玉, 黄志全, 等. 不同含石量条件下堆积体抗剪强度特性的大型直剪试验研究[J]. 岩土工程学报, 2016, 38(增刊2): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2026.htm

    YANG Ji-hong, DONG Jin-yu, HUANG Zhi-quan, et al. Large-scale direct shear tests on accumulation body with different stone contents[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 161-166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2026.htm

    [36] 刘正林. 摩擦学原理[M]. 北京: 高等教育出版社, 2009.

    LIU Zheng-lin. Principles of Tribology[M]. Beijing: Higher Education Press, 2009. (in Chinese)

  • 期刊类型引用(7)

    1. 黄波林,殷跃平,李仁江,蒋树,秦臻,张鹏,闫国强. 滑坡涌浪综合防控工程措施研究进展与挑战. 工程地质学报. 2025(01): 159-170 . 百度学术
    2. 刘红波,于磊,陈志华,陈再捷,庞富刚. 全钢集成式附着升降脚手架冲击性能研究. 施工技术(中英文). 2022(22): 72-79 . 百度学术
    3. 王文沛,殷跃平,胡卸文,李滨,刘明学,祁小博. 碎屑流冲击下桩梁组合结构拦挡效果及受力特征研究. 地质力学学报. 2022(06): 1081-1089 . 百度学术
    4. 范定坚,任曼妮. 约束空心混凝土柱抗侧向冲击动力性能. 辽宁工程技术大学学报(自然科学版). 2021(03): 214-219 . 百度学术
    5. 陈伟,谢建斌,赵一锦,孙孝海,叶海涵,林煌超. 饱和沙土中高频液压振动沉桩敏感性因素分析. 哈尔滨商业大学学报(自然科学版). 2020(02): 214-218 . 百度学术
    6. 王亚月. 钢砼叉桩动力响应模拟分析探究. 水利规划与设计. 2020(07): 102-108 . 百度学术
    7. 任根立,王秀丽. 泥石流块石冲击下钢绞线网组合结构的动力响应模拟研究. 安全与环境工程. 2019(05): 85-93 . 百度学术

    其他类型引用(6)

图(14)  /  表(2)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  28
  • PDF下载量:  140
  • 被引次数: 13
出版历程
  • 收稿日期:  2020-08-11
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-07-31

目录

    /

    返回文章
    返回