• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

海底盾构隧道–竖井连接部位三维非线性地震反应特性

陈国兴, 卢艺静, 王彦臻, 阮滨

陈国兴, 卢艺静, 王彦臻, 阮滨. 海底盾构隧道–竖井连接部位三维非线性地震反应特性[J]. 岩土工程学报, 2021, 43(8): 1382-1390. DOI: 10.11779/CJGE202108002
引用本文: 陈国兴, 卢艺静, 王彦臻, 阮滨. 海底盾构隧道–竖井连接部位三维非线性地震反应特性[J]. 岩土工程学报, 2021, 43(8): 1382-1390. DOI: 10.11779/CJGE202108002
CHEN Guo-xing, LU Yi-jing, WANG Yan-zhen, RUAN Bin. 3D nonlinear seismic response characteristics for the junction of undersea shield tunnel-shaft[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1382-1390. DOI: 10.11779/CJGE202108002
Citation: CHEN Guo-xing, LU Yi-jing, WANG Yan-zhen, RUAN Bin. 3D nonlinear seismic response characteristics for the junction of undersea shield tunnel-shaft[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1382-1390. DOI: 10.11779/CJGE202108002

海底盾构隧道–竖井连接部位三维非线性地震反应特性  English Version

基金项目: 

国家自然科学基金项目 51438004

详细信息
    作者简介:

    陈国兴(1963— ),男,浙江新昌人,教授,主要从事土动力学与岩土地震工程方面的研究工作。E-mail:gxc6307@163.com

  • 中图分类号: TU43

3D nonlinear seismic response characteristics for the junction of undersea shield tunnel-shaft

  • 摘要: 海底盾构隧道–竖井连接部位在地震作用下易发生损坏。以汕头海湾海底隧道为例,考虑海床土体和混凝土的非线性,利用多点约束与连接单元模拟管环间的螺栓连接,经幅值标定的不同特性的强震记录作为输入基岩地震动,采用动力时程法(纵轴向+横向+竖向震动、纵轴向+竖向震动)与广义反应位移法(纵轴向+横向+竖向震动)对比分析了盾构隧道–竖井连接部位的三维非线性地震反应特性。不同特性的地震动作用下,多点约束与连接单元能有效模拟盾构隧道管环间的变形特性,管环拱顶与外拱肩处的张开量较大;竖井在与竖轴共轭45°方向上的损伤严重、应力集中显著;低频丰富的地震记录激励比高频发育的地震记录激励对该连接部位的影响更大。隧道–竖井接头处的地震变形与应力远大于距离接头较远处隧道管环的地震变形与应力,且横向地震激励的影响不容忽视。两种方法计算的连接部位沿隧道纵向的地震反应特征一致,但广义反应位移法计算的隧道、竖井的地震反应明显大于动力时程法的结果。
    Abstract: The junction of the subsea shield tunnel-shaft is prone to damage subjected to strong earthquakes. Taking the subsea shield tunnel crossing under the Shantou Gulf, China as a case study, the three-dimensional seismic response characteristics of the junction of the subsea shield tunnel-shaft are analyzed using the dynamic time-history analysis method (longitudinal axial + transverse + vertical shakings, longitudinal axil + vertical shakings) and the generalized response displacement method (longitudinal axial + transverse + vertical shakings), which considers the nonlinear dynamic behaviors of the seabed soil and concrete, the simulation of the bolt joints between ring segments by using multi-point constraints and connection elements as well as the ground motions produced by scaling from the strong earthquake records. The results show that under all the input bedrock motions with various characteristics, the deformation features between segment rings can be simulated effectively by the multi-point constraints and connection elements, and the opening widths between ring segments at the ring top and outside spandrel are larger. Serious seismic damage and stress concentration exist at the conjugate with direction of 45° of shaft. The seismic responses of the tunnel-shaft junction subjected to the earthquake motions with rich low frequency components are much stronger than those of earthquake motions with rich high ones. The seismic deformation and stress of the tunnel-shaft junction are much greater than those of the ring segments, and the influences of the horizontal shaking along the transverse direction of the tunnel on the seismic responses of the ring segments and the tunnel-shaft junction cannot be ignored. The spatial variation of the seismic responses of the ring segments along the tunnel longitudinal axis and the tunnel-shaft junction calculated by the two methods is consistent, whereas the seismic responses calculated by the generalized response displacement method are much larger than those calculated by the dynamic time-history analysis method.
  • 图  1   沿隧道纵向轴线断面地质示意图

    Figure  1.   Geological sketch of section along longitudinal axis of tunnel

    图  2   三维动力时程分析的精细化有限元模型

    Figure  2.   Refined finite element model for three-dimensional dynamic time-history analysis

    图  3   基于Timoshenko壳–梁单元的广义反应位移法模型

    Figure  3.   Model for generalized response displacement method based on Timoshenko shell-beam elements

    图  4   典型钻孔S波和P波波速剖面图

    Figure  4.   Typical velocity profiles of S- and P-waves

    图  5   海底隧道场址典型土的G/Gmaxγλγ试验曲线

    Figure  5.   G/Gmaxγ and λγ curves of typical soils for subsea tunnel site

    图  6   管环间荷载传递机理示意图

    Figure  6.   Schematic diagram of load transfer mechanism of ring segment joints

    图  7   管环多点约束及连接单元示意图

    Figure  7.   Schematic diagram of multi-point constraints and connection elements of ring segments

    图  8   基岩输入地震动加速度时程及其傅氏谱(规准到PGA = 0.1g

    Figure  8.   Time histories of acceleration and Fourier spectra of input bedrock motions (0.1g level produced by scaling)

    图  9   隧道–竖井接头处的监测位置

    Figure  9.   Monitoring positions at junction of tunnel and shaft

    图  10   隧道–竖井接头各测点峰值张开量

    Figure  10.   Peak opening widths of monitoring elements at junction of tunnel and shaft

    图  11   不同方法计算的环间张开量极值

    Figure  11.   Maximum values of opening widths at ring intersegment calculated by different methods

    图  12   三向震动下隧道–竖井接头各测点峰值Mises应力

    Figure  12.   Maximum Mises stresses of monitoring elements at junction of tunnel and shaft under tri-directional ground motions

    图  13   三向震动下不同方法计算的管环间Mises应力极值

    Figure  13.   Peak Mises stresses at ring intersegment calculated by different methods under tri-directional ground motions

    图  14   三向震动下隧道–竖井连接部位损伤分布云图

    Figure  14.   Cloud diagram of damage indexes at junction of tunnel and shaft under tri-directional ground motions

    表  1   海床土的本构模型参数

    Table  1   Parameters of constitutive model for subsea soils

    土层ABγ0/(10-4)
    淤泥1.030.405.1
    淤泥质土1.010.396.7
    中粗砂1.200.377.4
    粉质黏土1.120.419.0
    花岗岩1.300.4010.0
    下载: 导出CSV

    表  2   混凝土损伤模型参数

    Table  2   Parameters of concrete from plasticity tests

    弹性模量Ec /GPa泊松比μ初始屈服应力σco /MPa抗压强度σcu /MPa抗拉强度σtu /MPa膨胀角Ψ/(°)偏心率δfbo/fcoKc黏性系数u
    360.233.2747.573.8838.00.11.162/30.0005
    注:fbo / fco为双轴与单轴极限抗压强度比;Kc为拉伸子午面和压缩子午面上的第二应力不变量之比。
    下载: 导出CSV

    表  3   基岩输入地震动的原始地震记录信息

    Table  3   Information of original earthquake recordings for input bedrock motions

    地震名称台站震级Ms震中距/km分量PGA/g持时D5-95 /s卓越频率fp /Hz
    DarfieldPage Road Pumping(PRP) Station7.153.53NS0.23022.290.34
    EW0.19821.980.38
    UD0.31815.0811.22
    IwateIWTH277.256.85NS0.34720.448.54
    EW0.23720.324.38
    UD0.12822.414.21
    KumanoKUMANO6.568NS0.01419.083.52
    EW0.01320.143.93
    UD0.01220.260.46
    下载: 导出CSV
  • [1]

    KAWASHIMA K. Seismic design of underground structures in soft ground: a review[C]//Proceedings of the International Symposium on Tunneling in Difficult Ground Conditions, 1999, Tokyo.

    [2] 赵武胜, 何先志, 陈卫忠, 等. 盾构隧道与竖井连接处管片及接头震害分析[J]. 岩石力学与工程学报, 2012, 31(增刊2): 3847-3854. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S2053.htm

    ZHAO Wu-sheng, HE Xian-zhi, CHEN Wei-zhong, et al. Analysis of seismic damage of segments and joints at the junction of shield tunnel and shaft[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3847-3854. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S2053.htm

    [3] 禹海涛, 张敬华, 袁勇, 等. 盾构隧道-工作井节点振动台试验设计与分析[J]. 中国公路学报, 2017, 30(8): 183-192. doi: 10.3969/j.issn.1001-7372.2017.08.021

    YU Hai-tao, ZHANG Jing-hua, YUAN Yong, et al. Design and analysis of shaking table test on shield tunnel-shaft junction[J]. China Journal of Highway and Transport, 2017, 30(8): 183-192. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.021

    [4] 谢宏明, 杜彦良, 何川, 等. 强震作用下大断面海底盾构隧道管片环缝防水性能[J]. 中国公路学报, 2017, 30(8): 201-209. doi: 10.3969/j.issn.1001-7372.2017.08.023

    XIE Hong-ming, DU Yan-liang, HE Chuan, et al. Waterproof performance of segment joints of large section subsea shield tunnel under strong earthquake[J]. China Journal of Highway and Transport, 2017, 30(8): 201-209. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.023

    [5]

    DURAN F C, KIYONO J, TSUNEI T, et al. Seismic response analysis of a shield tunnel connected to a vertical shaft[C]//Proceedings of the 15th World Conference on Earthquake Engineering, 2012, Lisboa.

    [6]

    OKAMOTO S, TAMURA C, KATO K, et al. Behaviors of submerged tunnels during earthquakes[C]//Proceedings of the 5th World Conference on Earthquake Engineering, 1973, Rome.

    [7] 王长祥, 梁建文, 李东桥, 等. 基于壳-弹簧模型的组合式预制管廊纵向抗震分析[J]. 自然灾害学报, 2020, 29(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202003001.htm

    WANG Chang-xiang, LIANG Jian-wen, LI Dong-qiao, et al. Longitudinal seismic analysis of combined precast utility tunnels by using shell-spring model[J]. Journal of Natural Disasters, 2020, 29(3): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202003001.htm

    [8] 苗雨, 陈超, 阮滨, 等. 基于广义反应位移法的过江盾构隧道纵向地震反应分析[J]. 北京工业大学学报, 2018, 44(3): 344-350. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201803004.htm

    MIAO Yu, CHEN Chao, RUAN Bin, et al. Crossing-river shield tunnel longitudinal seismic response analysis based on generalized displacement method[J]. Journal of Beijing University of Technology, 2018, 44(3): 344-350. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201803004.htm

    [9]

    CHEN G X, RUAN B, ZHAO K, et al. Nonlinear response characteristics of undersea shield tunnel subjected to strong earthquake motions[J]. Journal of Earthquake Engineering, 2020, 24(3): 351-380 doi: 10.1080/13632469.2018.1453416

    [10] 地下结构抗震设计标准:GB/T 51336—2018[S]. 2018.

    Standard for Seismic Design of Underground Structures: GB/T 51336—2018[S]. 2018. (in Chinese)

    [11] 刘晶波, 谷音, 杜义欣. 一致黏弹性人工边界及黏弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070-1075. doi: 10.3321/j.issn:1000-4548.2006.09.004

    LIU Jing-bo, GU Yin, DU Yi-xin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070-1075. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.004

    [12] 赵丁凤, 阮滨, 陈国兴, 等. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证[J]. 岩土工程学报. 2017, 39(5): 888-895. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705018.htm

    ZHAO Ding-feng, RUAN Bin, CHEN Guo-xing, et al. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888-895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705018.htm

    [13]

    CHEN G X, WANG Y Z, ZHAO D F, et al. A new effective stress method for nonlinear site response analyses[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(6): 1595-1611.

    [14]

    Dassault Systèmes Simulia Incorporation (DSSI, 2010). Abaqus Analysis User’s Manual Version 6.10. Providence, Rhode Island, USA. Volume Ⅲ: Material.

    [15] 张劲, 王庆扬, 胡守营, 等. ABAQUS混凝土损伤塑性模型参数验证[J]. 建筑结构, 2008, 38(8): 127-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200808041.htm

    ZHANG Jin, WANG Qing-yang, HU Shou-ying, et al. Parameters verification of concrete damaged plastic model of ABAQUS[J]. Building Structure, 2008, 38(8): 127-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200808041.htm

    [16]

    OWEN G N, SCHOLL R E. Earthquake Engineering of Large Underground Structures[R]. Washington D C: Federal Highway Administration and National Science Foundation, 1981.

  • 期刊类型引用(1)

    1. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 . 百度学术

    其他类型引用(9)

图(14)  /  表(3)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  30
  • PDF下载量:  192
  • 被引次数: 10
出版历程
  • 收稿日期:  2021-01-04
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-07-31

目录

    /

    返回文章
    返回