Dilatancy behaviors of rockfill materials considering particle breakage
-
摘要: 针对某高堆石坝的筑坝堆石料开展大型三轴排水剪切试验,研究堆石料在不同孔隙比及不同应力状态下的颗粒破碎与剪胀特性关系,结果表明,不同孔隙比堆石料在低围压下都表现出剪胀,但随围压增大,堆石料的剪胀现象均逐渐消失并转为剪缩。提出了破坏剪胀率概念,用以描述堆石料颗粒破碎与其剪胀特性的关系,试验发现,随着堆石料颗粒破碎率增加,破坏剪胀率呈幂函数规律减小,剪胀现象逐渐消失;随着堆石料初始孔隙比增加,破坏剪胀率减小,但试验围压越大,初始孔隙比对剪胀特性的影响越小。基于上述试验结果,提出了堆石料初始孔隙比与其剪胀性和颗粒破碎的关系式,用于不同围压下堆石料剪胀特性的预测。Abstract: In order to study the relationship between particle breakage and dilatancy characteristics of rockfill materials under different porosity and stress conditions, the large-scale triaxial tests are carried out on the rockfill materials of a high rockfill dam. The results show that the of rockfill materials with different porosities exhibit different degrees of dilatancy under low confining pressure. As the confining pressure increases, the dilatancy phenomenon of the rockfill materials gradually disappears and turns into shrinkage. Therefore, the concept of breaking dilatancy ratio is put forward and used to describe the relationship between particle breakage and dilatancy characteristics. It is found that as the crushing rate of rockfill particles increases, the breaking dilatancy rate decreases in the form of a power function, and the dilatancy phenomenon gradually disappears. As the initial porosity of the rockfill materials increases, the failure dilatancy decreases, but the larger the confining pressure, the less the initial porosity has a smaller effect on the dilatancy characteristics. Based on the above test results, the relationship among the initial porosity of the rockfill materials, their dilatancy and particle breakage is established to predict the dilatancy of the rockfill materials under different confining pressures.
-
本文撰写及修订过程中,得到了南京水利科学研究院陈生水正高级工程师提供的帮助和指导,在此诚恳致谢。
-
表 1 试验堆石料物理性质
Table 1 Physical properties of rockfill materials
试验编号 制样干密度/(g·cm-3) 土粒相对质量密度Gs 初始孔隙比e0 1 2.20 2.71 0.23 2 2.17 2.71 0.25 3 2.14 2.71 0.27 表 2 不同孔隙比及围压下颗粒破碎率
Table 2 Values of particle breakage ratio
under different porosities and confining pressures 初始孔隙比 /% =0.4 MPa =0.8 MPa =1.2 MPa =2.0 MPa =3.2 MPa 0.23 5.2 6.7 9.0 10.7 14.6 0.25 5.7 7.4 9.7 11.4 15.0 0.27 6.0 8.1 10.2 12.2 15.8 -
[1] 石北啸, 蔡正银, 陈生水. 温度变化对堆石料变形影响的试验研究[J]. 岩土工程学报, 2016, 38(增刊2): 299-305. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2049.htm SHI Bei-xiao, CAI Zheng-yin, CHEN Sheng-shui. Experiments on influence of temperature on deformation of rock fills[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 299-305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2049.htm
[2] MARACHI N D, CHAN C K, SEED H B. Evaluation of properties of rockfill materials[J]. Journal of Soil Mechanics and Foundation Division, American Society of Civil Engineering, 1972, 98(1): 95-114.
[3] WAN R G, GUO R G. A pressure and density dependent dilatancy model for granular materials[J]. Journal of Engineering, 1999, 39(6): 1-12.
[4] YANG J, LI X S. State-dependent strength of sands from the perspective of unified modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(2): 186-198. doi: 10.1061/(ASCE)1090-0241(2004)130:2(186)
[5] 徐卫卫, 石北啸, 陈生水, 等. 孔隙率对堆石料强度与变形的影响规律[J]. 岩土工程学报, 2018, 40(增刊2): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2012.htm XU Wei-wei, SHI Bei-xiao, CHEN Sheng-shui, et al. Effects of porosity on strength and deformation of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 47-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2012.htm
[6] 王峰. 考虑颗粒破碎的堆石料级配演化和变形特性研究[D]. 大连: 大连理工大学, 2018. WANG Feng. Study on Grading Evolution and Deformation of Rockfill Materials Considering Particle Breakage[D]. Dalian: Dalian University of Technology, 2018. (in Chinese)
[7] 凌华, 傅华, 韩华强. 粗粒土强度和变形的级配影响试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 12-16. doi: 10.11779/CJGE2017S1003 LING Hua, FU Hua, HAN Hua-qiang. Experimental study on effects of gradation on strength and deformation of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 12-16. (in Chinese) doi: 10.11779/CJGE2017S1003
[8] 王子寒, 周健, 赵振平, 等.粗粒土强度特性及颗粒破碎试验研究[J]. 工业建筑, 2013, 43(8): 90-93, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201308019.htm WANG Zi-han, ZHOU Jian, ZHAO Zhen-ping, et al. Experimental study on strength and crushing behavior of coarse-grained soil[J]. Industrial Construction, 2013, 43(8): 90-93, 14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201308019.htm
[9] 郭万里, 朱俊高, 彭文明. 粗粒土的剪胀方程及广义塑性本构模型研究[J]. 岩土工程学报, 2018, 40(6): 1103-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806019.htm GUO Wan-li, ZHU Jun-gao, PENG Wen-ming. Dilatancy equation and generalized plastic constitutive model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1103-1110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806019.htm
[10] 秦红玉, 刘汉龙, 高玉峰, 等. 粗粒料强度和变形的大型三轴试验研究[J]. 岩土力学, 2004, 25(10): 1575-1580. doi: 10.3969/j.issn.1000-7598.2004.10.013 QIN Hong-yu, LIU Han-long, GAO Yu-feng, et al. Research on strength and deformation behavior of coarse aggregates based on large-scale triaxial tests[J]. Rock and Soil Mechanics, 2004, 25(10): 1575-1580. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.10.013
[11] 褚福永, 朱俊高, 殷建华. 基于大三轴试验的粗粒土剪胀性研究[J]. 岩土力学, 2013, 34(8): 2249-2254. doi: 10.16285/j.rsm.2013.08.011 ZHU Fu-yong, ZHU Jun-gao, YIN Jian-hua, et al. Study of dilatancy behaviors of coarse-grained soils in large-scale triaxial test[J]. Rock and Soil Mechanics, 2013, 34(8): 2249-2254. (in Chinese) doi: 10.16285/j.rsm.2013.08.011
[12] 陈晓斌. 红砂岩粗粒土剪胀效应大型三轴试验研究[J]. 岩石力学与工程学报, 2010, 29(增刊1): 3145-3149. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1081.htm CHEN Xiao-bin. Study of dilatancy effect of Redstone coarse grained soil by large scale triaxial tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3145-3149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1081.htm
[13] 姜景山, 刘汉龙, 程展林, 等. 密度和围压对粗粒土力学性质的影响[J]. 长江科学院院报, 2009, 26(8): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200908014.htm JIANG Jing-shan, LIU Han-long, CHENG Zhan-lin, et al. Influences of density and confining pressure on mechanical properties for coarse grained soils[J]. Journal of Yangtze River Scientific Research Institute, 2009, 26(8): 46-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200908014.htm
[14] 陈守义. 各向异性线弹性体的剪胀与压斜[J]. 岩土力学, 1990, 11(1): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199001005.htm CHEN Shou-yi. Shearing dilatancy and isostatic deformity of anisotropic linear elastic material[J]. Rock & Soil Mechanics, 1990, 11(1): 41-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199001005.htm
[15] 土工试验方法标准:SL237—2019[S]. 2019. Standard for Soil Test Method: SL237—2019[S]. 2019. (in Chinese)
[16] 日本土质工学会. 粗粒土的现场压实[M]. 郭熙灵, 文丹,译. 北京: 中国水利水电出版社, 1999. Soil Engineering Society of Japan. Field Compaction of Coarse Materials[M]. GUO Xi-ling, WEN Dan, trans. Beijing: China WaterPower Press, 1999. (in Chinese)
[17] MANZARI M T, DAFALIAS Y F. A critical state two-surface plasticity model for sands[J]. Géotechnique, 1997, 47(2): 255-272.
[18] MARSAL R J. Large scale testing of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(2): 27-43.
[19] 刘萌成, 高玉峰, 刘汉龙. 堆石料剪胀特性大型三轴试验研究[J]. 岩土工程学报, 2008, 30(2): 205-211. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200802009.htm LIU Meng-cheng, GAO Yu-feng, LIU Han-long. Study on shear dilatancy behaviors of rockfills in large-scale triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 205-211. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200802009.htm
-
期刊类型引用(1)
1. 梁靖宇,齐吉琳,张跃东,路德春,李昊雯. 考虑温度与围压影响的冻结砂土非正交弹塑性本构模型. 岩土工程学报. 2024(09): 1889-1898 . 本站查看
其他类型引用(5)