• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

任意形状深埋隧道地震响应解析解

禹海涛, 陈功

禹海涛, 陈功. 任意形状深埋隧道地震响应解析解[J]. 岩土工程学报, 2021, 43(7): 1331-1337. DOI: 10.11779/CJGE202107019
引用本文: 禹海涛, 陈功. 任意形状深埋隧道地震响应解析解[J]. 岩土工程学报, 2021, 43(7): 1331-1337. DOI: 10.11779/CJGE202107019
YU Hai-tao, CHEN Gong. Analytical solution for seismic response of deep tunnels with arbitrary cross-section shapes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1331-1337. DOI: 10.11779/CJGE202107019
Citation: YU Hai-tao, CHEN Gong. Analytical solution for seismic response of deep tunnels with arbitrary cross-section shapes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1331-1337. DOI: 10.11779/CJGE202107019

任意形状深埋隧道地震响应解析解  English Version

基金项目: 

国家自然科学基金项目 41922059

国家自然科学基金项目 51678438

国家重点研发计划项目 2017YFC1500703

国家重点研发计划项目 2017YFC0805501

中央高校基本科研业务费专项资金项目 

详细信息
    作者简介:

    禹海涛(1983— ),男,博士,教授,主要从事地下结构防灾减灾方面的研究工作。E-mail:yuhaitao@tongji.edu.cn

  • 中图分类号: TU92

Analytical solution for seismic response of deep tunnels with arbitrary cross-section shapes

  • 摘要: 考虑地层-结构相互作用的拟静力法广泛应用于隧道抗震设计和分析,而以拟静力法为基础推导出的解析解则更是备受工程设计人员所青睐,但现有解析方法仅适用于圆形或矩形隧道。以均质地层中的任意形状深埋隧道为对象,将衬砌简化为均质地层中的壳体,并考虑隧道内部中隔墙的影响,建立了远场剪切波作用下隧道结构和地层各自的控制方程,结合地层与结构之间不滑移和全滑移两种典型接触边界,运用复变函数及保角映射方法,推导出均质地层中任意形状深埋隧道地震响应的解析解。通过与有限元基准模型在相同计算条件下的结果对比,验证了本文解析方法的正确性。最后应用该解析表达式开展多工况参数化分析,揭示了地层–结构相对刚度比和中隔墙厚度等因素对不规则断面隧道结构的地震响应的影响规律。结果表明:隧道结构内力响应随地层-结构相对刚度的增大而增大,而位移响应则相反;不滑移条件下隧道的内力响应要大于全滑移条件的内力响应,而位移响应相比全滑移条件则较小;与不考虑中隔墙的隧道相比,当中隔墙厚度大于隧道衬砌厚度1.5倍时,中隔墙的存在将显著增大衬砌的最大内力响应。
    Abstract: The pseudo-static method considering ground-structure interaction is widely used in seismic design and analysis of tunnels, and especially, the analytical solution based on this method can serve as an effective tool for practitioners. However, the existing methods in literatures are only applicable for circular or rectangular tunnels. An analytical solution for seismic response of deep tunnels with arbitrary cross-section shapes in homogeneous ground is presented. The lining is assumed as a shell, and the effects of the middle wall as well as two typical soil-structure contact conditions (i.e., no-slip and full-slip) are also considered. First, the governing equations for the tunnel structure and the ground are introduced. Then, the complex variable function and the conformal mapping method are employed to obtain the analytical solution. The validation of the proposed solution is verified by comparison with the results from FEM. Finally, parametric analyses are carried out using the solution, and the influences of the relative stiffness ratio of the ground to the structure as well as the thickness of middle wall are analyzed. The results show that the internal force of the tunnel increases with the increase of the ground-structure relative stiffness ratio, while the deformation of the tunnel decreases. The internal force of the tunnel under no-slip condition is larger than that under full-slip condition, while, oppositely, the structural deformation under no-slip condition is less than that under full-slip condition. Compared to that of the case neglecting the middle wall in the tunnel, the maximum internal force of the tunnel significantly increases when the thickness of the middle wall is 1.5 times larger than the thickness of the tunnel lining.
  • 图  1   远场剪应力作用下的任意形状深埋隧道

    Figure  1.   Deep tunnel with arbitrary cross-section shapes subjected to far-field shear loading

    图  2   保角变换

    Figure  2.   Conformal transformation

    图  3   含中隔墙隧道计算简图

    Figure  3.   Mechanical model for a tunnel with middle wall

    图  4   直墙拱形隧道地震响应对比验证

    Figure  4.   Comparison of seismic responses of straight-wall-arch shaped tunnel by FEM model and proposed analytical solution

    图  5   类矩形隧道地震响应对比验证

    Figure  5.   Comparison of seismic responses of quasi-rectangular tunnel by FEM model and proposed analytical solution

    图  6   柔度比对隧道最大内力响应和位移响应的影响

    Figure  6.   Effects of flexibility ratio on maximum stress and displacement responses of tunnel

    图  7   中隔墙厚度对衬砌内力分布的影响

    Figure  7.   Effects of thickness of the middle wall on stress distribution of lining

  • [1] 朱雁飞, 刘震, 叶宇航, 等. 类矩形盾构隧道结构计算方法研究[J]. 现代隧道技术, 2016, 53(增刊1): 128-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2016S1019.htm

    ZHU Yan-fei, LIU Zhen, YE Yu-hang, et al. Structural calculation of quasi-rectangular shield tunnels[J]. Modern Tunnelling Technology, 2016, 53(S1): 128-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2016S1019.htm

    [2] 左熹, 陈国兴, 庄海洋. 圆形和直墙拱形地下隧道地震反应数值模拟对比分析[J]. 防灾减灾工程学报, 2007, 27(4): 401-406, 420. doi: 10.3969/j.issn.1672-2132.2007.04.005

    ZUO Xi, CHEN Guo-xing, ZHUANG Hai-yang. Comparison between circular and straight-wall-top-arch tunnels under seismic response based on numerical simulation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2007, 27(4): 401-406, 420. (in Chinese) doi: 10.3969/j.issn.1672-2132.2007.04.005

    [3]

    AMOROSI A, BOLDINI D. Numerical modelling of the transverse dynamic behaviour of circular tunnels in clayey soils[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(6): 1059-1072. doi: 10.1016/j.soildyn.2008.12.004

    [4]

    STAMOS A A, BESKOS D E. Dynamic analysis of large 3-D underground structures by the BEM[J]. Earthquake Engineering and Structural Dynamics, 1995, 24(6): 917-934 doi: 10.1002/eqe.4290240609

    [5]

    YU, H T, YUAN Y, BOBET A. Multiscale method for long tunnels subjected to seismic loading[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2013, 37(4): 374-398.

    [6]

    YU H T, YUAN Y, QIAO Z Z, et al. Seismic analysis of a long tunnel based on multi-scale method[J]. Engineering Structures, 2013, 49(1): 572-587.

    [7] 禹海涛, 袁勇. 长大隧道地震响应分析与试验方法新进展[J]. 中国公路学报, 2018, 31(10): 19-35. doi: 10.3969/j.issn.1001-7372.2018.10.003

    YU Hai-tao, YUAN Yong. Review on seismic response analysis and test methods for long and large tunnels[J]. China Journal of Highway and Transport, 2018, 31(10): 19-35. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.10.003

    [8] 袁勇, 包蓁, 禹海涛, 等. 考虑行波效应的盾构隧道多点振动台试验[J]. 中国公路学报, 2017, 30(8): 174-182. doi: 10.3969/j.issn.1001-7372.2017.08.020

    YUAN Yong, BAO Zhen, YU Hai-tao, et al. Multi-point shaking table test on shield tunnels in consideration of wave-passage effect[J]. China Journal of Highway and Transport, 2017, 30(8): 174-182. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.020

    [9] 袁勇, 禹海涛, 燕晓, 等. 超长沉管隧道多点振动台试验模拟与分析[J]. 中国公路学报, 2016, 29(12): 157-165. doi: 10.3969/j.issn.1001-7372.2016.12.020

    YUAN Yong, YU Hai-tao, YAN Xiao, et al. Multipoint shaking table test simulation and analysis of a super-long immersed tunnel[J]. China Journal of Highway and Transport, 2016, 29(12): 157-165. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.12.020

    [10] 禹海涛, 李翀, 袁勇, 等. 用于长隧道多点振动台试验的节段式模型箱及其适用性研究[J]. 中国公路学报, 2016, 29(12): 166-174. doi: 10.3969/j.issn.1001-7372.2016.12.021

    YU Hai-tao, LI Chong, YUAN Yong, et al. Research on segmental model container and its validation for multi-point shaking table test of long tunnels[J]. China Journal of Highway and Transport, 2016, 29(12): 166-174. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.12.021

    [11]

    HASHASH Y M A, HOOK J J, SCHMIDT B, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4): 247-293. doi: 10.1016/S0886-7798(01)00051-7

    [12]

    BOBET A. Effect of pore water pressure on tunnel support during static and seismic loading[J]. Tunnelling and Underground Space Technology, 2003, 18(4): 377-393. doi: 10.1016/S0886-7798(03)00008-7

    [13]

    WANG J N. Seismic design of tunnels: a simple state-of-the- art design approach[M]. Parsons Brinckerhoff Inc, 1993.

    [14]

    EINSTEIN H H, SCHWARTZ C W. Simplified analysis for tunnel supports[J]. Journal of the Geotechnical Engineering Division, 1979, 105(4): 499-518. doi: 10.1061/AJGEB6.0000786

    [15]

    PENZIEN J, WU C L. Stresses in linings of bored tunnels[J]. Earthquake Engineering & Structural Dynamics, 1998, 27(3): 283-300.

    [16]

    BOBET A. Drained and undrained response of deep tunnels subjected to far-field shear loading[J]. Tunnelling and Underground Space Technology, 2010, 25(1): 21-31. doi: 10.1016/j.tust.2009.08.001

    [17]

    PENZIEN J. Seismically induced racking of tunnel linings[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(5): 683-691.

    [18]

    HUO H, BOBET A, FERNANDEZ G, et al. Analytical solution for deep rectangular structures subjected to far-field shear stresses[J]. Tunnelling and Underground Space Technology, 2006, 21(6): 613-625. doi: 10.1016/j.tust.2005.12.135

    [19] 徐芝纶. 弹性力学[M]. 2版. 北京: 人民教育出版社, 1982: 232-240.

    XU Zhi-lun. Elastic Mechanics[M]. 2nd ed. Beijing: People's Education Press, 1982: 232-240. (in Chinese)

    [20] 吕爱钟, 张路青. 地下隧洞力学分析的复变函数方法[M]. 北京: 科学出版社, 2007.

    LÜ Ai-zhong, ZHANG Lu-qing. Complex Function Method for Mechanical Analysis of Tunnels[M]. Beijing: Science Press, 2007. (in Chinese)

    [21]

    MUSKHELISHVILI N I. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Dordrecht: Springer Science Business Media Dordrecht, 1977: 113-116.

    [22] 国家质量监督检验检疫总局, 国家标准化管理委员会. 中国地震烈度表[M]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Chinese Seismic Intensity Scale[M]. Beijing: Standards Press of China, 2008. (in Chinese)

图(7)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-09
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回