Experimental study on vertical propagation of fractures of multi-sweet of spots shale oil reservoir
-
摘要: 鄂尔多斯盆地延长组长7段发育丰富砂岩和页岩多薄互层叠置的页岩油资源,勘探开发评估资源量达数十亿吨以上。但页岩油储层多甜点层叠置,层理、裂缝发育、各向异性和非均质性显著,压裂改造时缝高垂向延伸距离短,体积压裂改造难度大。基于室内真三轴室内压裂物模试验,针对长庆长7段井下连续储层段获取的全直径致密砂岩和页岩全直径岩心,利用混凝土包裹全直径井下岩心测试真三轴环境下的水力裂缝起裂和垂向延伸形态,揭示长7段页岩油储层多甜点岩性压裂裂缝垂向扩展机理。试验发现:页岩油储层层理呈“千层饼”状且胶结弱,压裂液易沿层理渗滤,在垂向应力与最小水平主应力之差小于12 MPa时,水力裂缝形态多呈现水平缝,压裂液沿层理逐层渗滤。排量增大到30 mL/min时,页岩易发生剪切滑移破坏,形成高倾角水平缝或跳跃台阶缝。垂向应力与最小水平主应力之差曾加到14 MPa时,会产生明显的垂向穿层缝,纵向沟通多套甜点层。无论排量高低(30,15 mL/min),垂直缝均沟通多个层理,压裂液会在沿垂直缝上下延伸过程中,当被弱胶结层理面捕获时,沿层理缝渗滤扩展,产生“十”字型或“丰”字型的复杂缝。压裂施工时,优选垂向应力与最小水平主应力差值大的层位射孔,有利于水力裂缝穿层扩展增加复杂裂缝体积,提高页岩油储层体积改造效果。Abstract: Shale oil resources are developed richly in the Yanchang Formation of the Ordos Basin, which is deposited with multiple layers of sandstone and shale, and the results of exploration and development in recent years have shown that its conservatively assessed resources can reach more than billions of tons. The shale oil reservoirs are stacked with developed bedding and natural fractures and obvious anisotropy and heterogeneity, so the fractures height of in the longitudinal extension distance is usually short, making it difficult to accomplish reservoir reconstruction. Based on indoor true triaxial fracturing physical experiments on the full-diameter shale and sandstone cores obtained from the downhole reservoir section of Changqing 7, the full-diameter core is wrapped by concrete to test the initiation and vertical propagation of hydraulic fracturing in a true triaxial environment. Experiment are carried out to reveal the vertical propagation mechanism of fractures of multi-sweet spots with different lithologic reservoirs in 7 shale oil formation of Changqing. It is found that the shale oil reservoir bedding is in the shape of a "thick cake", and the bedding is cemented weakly. Fracturing fluid is easy to percolate along the bedding. When the difference between the vertical stress and the minimum horizontal stress is less than 12 MPa, the shape of the hydraulic fracture generally exhibits a horizontal fracture, and the fracturing fluid is percolated along the bedding. If the displacement is large (30 mL/min), the samples will be caused to produce shear slip damage, resulting in a high-inclination horizontal fracture or a jumping step fracture. When the difference between the vertical stress and the minimum horizontal stress reaches 14 MPa, the obvious vertical fracture will be produced, and it will connect multi-sweet spots. At this time, regardless of whether the flowing rate is high or low, the vertical fractures will communicate with multiple stratification fractures, and the fracturing fluid will be captured by the weakly cemented stratification surface during the expansion of the vertical fractures, then fracturing fluid is percolated and expands along the bedding fractures, resulting in a complex cross shape or road-network complex fractures. During the fracturing construction, it is recommended to perforate a layer with a large difference between the vertical stress and the minimum horizontal principal stress, which is conducive to create vertical hydraulic fractures, then the complex fractures will beformed to enhance the effect of reservoir reconstruction.
-
-
表 1 致密砂岩–页岩水力压裂模拟试验参数
Table 1 Parameters for hydraulic fracturing experiments on shale and sandstone
试样编号 三向应力/MPa 排量/(mL·min-1) (σV−σh) /MPaσV σH σh #1 28 22 16 15 12 #2 28 22 16 15 12 #3 28 22 16 30 12 #4 30 22 16 15 14 #5 30 22 16 30 14 #6 22 18 16 15 6 #7 22 18 16 30 6 -
[1] 林森虎, 邹才能, 袁选俊, 等. 美国致密油开发现状及启示[J]. 岩性油气藏, 2011, 23(4): 25-30. doi: 10.3969/j.issn.1673-8926.2011.04.005 LIN Sen-hu, ZOU Cai-neng, YUAN Xuan-jun, et al Status quo of tight oil exploitation in the United States and its implication[J]. Lithologic Reservoirs, 2011, 23(4): 25-30. (in Chinese) doi: 10.3969/j.issn.1673-8926.2011.04.005
[2] 邹才能, 张光亚, 陶士振, 等. 全球油气勘探领域地质特征、重大发现及非常规石油地质[J]. 石油勘探与开发, 2010, 37(2): 129-145. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002002.htm ZOU Cai-neng, ZHANG Guang-ya, TAO Shi-zhen, et al. Geological features,major discoveries and unconventional petroleum geology in the global petroleum exploration[J]. Petroleum Exploration and Development, 2010, 37(2): 129-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002002.htm
[3] 杨华, 梁晓伟, 牛小兵, 等. 陆相致密油形成地质条件及富集主控因素——以鄂尔多斯盆地三叠系延长组7段为例[J]. 石油勘探与开发, 2017, 44(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701003.htm YANG Hua, LIANG Xiao-wei, NIU Xiao-bing, et al. Geological conditions for continental tight oil formation and the main controlling factors for the enrichment: a case of Chang 7 Member, Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(1): 12-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701003.htm
[4] 付金华, 牛小兵, 淡卫东, 等. 鄂尔多斯盆地中生界延长组长 7 段页岩油地质特征及勘探开发进展[J]. 中国石油勘探, 2019, 24(5): 601-614. doi: 10.3969/j.issn.1672-7703.2019.05.007 FU Jin-hua, NIU Xiao-bing, DAN Wei-dong, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601-614. (in Chinese) doi: 10.3969/j.issn.1672-7703.2019.05.007
[5] 慕立俊, 赵振峰, 李宪文, 等. 鄂尔多斯盆地页岩油水平井细切割体积压裂技术[J]. 石油与天然气地质, 2019, 40(3): 626-635. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903018.htm MU Li-jun, ZHAO Zhen-feng, LI Xian-wen, et al. Fracturing technology of stimulated reservoir volume with subdivision cutting for shale oil horizontal wells in Ordos Basin[J]. Oil & Gas Geology, 2019, 40(3): 626-635. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903018.htm
[6] MAHRER K D. A review and perspective on far-field hydraulic fracture geometry studies[J]. Journal of Petroleum Science & Engineering, 1999, 24(1): 13-28.
[7] BEUGELSDIJK L J L, DEPATER C J, SARO K. Experimental hydraulic fracture propagation in multi-fractured medium[C]//Asia Pacific Conference on Intergrated Modelling for Asset Management. 2020, Yokohama.
[8] FISHER M K, WRIGHT C A, DAVIDSON B M, et al. Integrating fracture mapping technologies to improve stimulations in the barnett shale[J]. SPE Production & Facilities, 2005, 20(2): 85-93.
[9] DENNEY D. Optimizing horizontal completions in the barnett shale with microseismic fracture mapping[J]. Journal of Petroleum Technology, 2005, 57(3): 41-43. doi: 10.2118/0305-0041-JPT
[10] MAYERHOFER M J, BOLANDER J L, WILLIAMS L I, et al. Integration of microseismic-fracture-mapping fracture and production analysis with well-interference data to optimize fracture treatments in the overton field, East Texas[C]//SPE Annual Technical Conference and Exhibiton, 2005, Dallas.
[11] MAYERHOFER M J J, LOLON E P P, WARPINSKI N R R, et al. What is stimulated reservoir volume?[J]. SPE Production & Operations, 2010, 25(1): 89-98.
[12] 陈勉. 页岩气储层水力裂缝转向扩展机制[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 88-94. doi: 10.3969/j.issn.1673-5005.2013.05.013 CHEN Mian. Re-orientation and propagation of hydraulic fractures in shale gas reservoir[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(5): 88-94. (in Chinese) doi: 10.3969/j.issn.1673-5005.2013.05.013
[13] 陈勉, 金衍, 卢运虎. 页岩气开发:岩石力学的机遇与挑战[J]. 中国科学:物理学 力学 天文学, 2017, 47(11): 6-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711002.htm CHEN Mian, JIN Yan, LU Yun-hu. Shale gas development: Opportunities and challenges for rock mechanics[J]. Scientia Sinica (Physica Mechanical) and Astronomical, 2017, 47(11): 6-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711002.htm
[14] 侯冰, 程万, 陈勉, 等. 裂缝性页岩储层水力裂缝非平面扩展实验[J]. 天然气工业, 2014, 34(12): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412016.htm HOU Bing, CHENG Wan, CHEN Mian, et al. Experiments on the non-planar extension of hydraulic fractures in fractured shale gas reservoirs[J]. Natural Gas Industry, 2014, 34(12): 81-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412016.htm
[15] HOU Bing, CHEN Mian, LI Zhimeng, et al. Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs[J]. Petroleum Exploration And Development, 2014, 41(6): 833-838. doi: 10.1016/S1876-3804(14)60101-4
[16] HOU B, ZHANG R X, ZENG Y J, et al. Analysis of hydraulic fracture initiation and propagation in deep shale formation with high horizontal stress difference[J]. Journal of Petroleum Science and Engineering, 2018, 170: 231-243. doi: 10.1016/j.petrol.2018.06.060
[17] HOU B, ZHANG R X, TAN P, et al. Characteristics of fracture propagation in compact limestone formation by hydraulic fracturing in central Sichuan, China[J]. Journal of Natural Gas Science and Engineering, 2018, 57: 122-134. doi: 10.1016/j.jngse.2018.06.035
[18] 高杰, 侯冰, 谭鹏, 等. 砂煤互层水力裂缝穿层扩展机理[J]. 煤炭学报, 2017, 42(增刊2): 428-433. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2017S2017.htm GAO Jie, HOU Bing, TAN Peng, et al. Propagation mechanism of hydraulic fracture in sand coal interbedding[J]. Journal of China Coal Society, 2017, 42(S2): 428-433. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2017S2017.htm
[19] 张儒鑫, 侯冰, 单清林, 等. 致密砂岩储层水平井螺旋射孔参数优化研究[J]. 岩土工程学报, 2018, 40(11): 2143-2147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811027.htm ZHANG Ru-xin, HOU Bing, SHAN Qing-lin, et al. Parameter optimization of spiral perforations in horizontal well with tight sandstone reservoir[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2143-2147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811027.htm
[20] 夏彬伟, 刘浪, 彭子烨, 等. 致密砂岩水平井多裂缝扩展及转向规律研究[J]. 岩土工程学报, 2020, 42(8): 1549-555. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008027.htm XIA Bin-wei, LIU Lang, PENG Zi-ye, et al. Multi-fracture propagation and deflection laws of horizontal wells in tight sandstone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1549-1555. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008027.htm
[21] 衡帅, 杨春和, 曾义金, 等. 页岩水力压裂裂缝形态的试验研究[J]. 岩土工程学报, 2014, 36(7): 1243-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201407010.htm HENG Shuai, YANG Chun-he, ZENG Yi-jin, et al. Experimental study on hydraulic fracture geometry of shale[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1243-1251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201407010.htm
[22] HUANG L K, LIU J J, ZHANG F S, et al. 3D lattice modeling of hydraulic fracture initiation and near-wellbore propagation for different perforation models[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107169.
[23] AN M, ZHANG F, ELSWORTH D, et al. Friction of Longmaxi shale gouges and implications for seismicity during hydraulic fracturing[J]. Journal of Geophysical Research (Solid Earth), 2020, 125(8): e2020JBO19885.
[24] CLIFTON R J, ABOU-SAYED A S. On the computation of the three-dimensional geometry of hydraulic fractures[C]//Symposium on Low Permeability Gas Reservoirs. 1979, Denver.