Experimental study on reinforcement of calcareous sand by targeting activation of microbes producing urease
-
摘要: 针对产脲酶微生物设计了6种不同的靶向激活方案,进行钙质砂的生物矿化加固试验。通过无侧限抗压测试、碳酸钙生成量测定、SEM和XRD试验分析,评价钙质砂的加固效果,得出最佳靶向激活方案,最后通过高通量测序的分析结果分析激活前后的钙质砂中微生物群落的变化情况。结果表明:①靶向激活方案中YE和NH4Cl的浓度会显著影响激活的效果,其中0.2 g/L的YE、100 mmol/L的NH4Cl、初始pH值为9.0的激活方案效果最好;②钙质砂中新生成的方解石含量越多、分布越均匀,则钙质砂的加固效果越好,在最佳的激活方案下矿化加固后砂柱的平均UCS值可提高至350 kPa;③靶向激活改变了微生物的群落组成,使产脲酶微生物成为优势物种。Abstract: Six different targeted activation schemes for urea-producing microorganisms are designed for the biomineralization and reinforcement of calcareous sand. Through unconfined compression tests, calcium carbonate production measurements, SEM and XRD test analysis, the reinforcement effects of calcareous sand are evaluated, and the best targeted activation scheme is obtained. Finally, the changes of microbial community in the calcareous sand before and after activation are analyzed by high-throughput sequencing analysis results. The results show that: (1) the concentration of YE and NH4Cl in the targeted activation plan will significantly affect the activation effects, among which the activation plan with 0.2g/L YE, 100 mmol/L NH4Cl and initial pH value of 9.0 has the best effects. (2) The more calcite content and distribution of the calcareous sand is newly generated, the better the reinforcement effects of calcareous sand will be. Under the optimal activation scheme, the average UCS value of sand columns after mineralization reinforcement can be increased to 350 kPa. (3) The targeted activation changes the microbial community composition, making urea-producing microorganisms the dominant species.
-
Keywords:
- biostimulation /
- calcareous sand /
- biocementation /
- calcite /
- microbial community
-
-
表 1 靶向激活方案
Table 1 Targeted activation solutions
方案名称 YE/(g·L-1) 氯化铵/(mmol·L-1) pH 方案1 1.0 12.5 7.0 方案2 0.2 12.5 7.0 方案3 0.2 12.5 9.0 方案4 0.2 200.0 9.0 方案5 0.1 12.5 7.0 方案6 0.2 100.0 9.0 对照组 0.2 100.0 9.0 表 2 激活前后钙质砂群落的Alpha多样性分析
Table 2 Alpha diversity analysis of calcareous sand community before and after activation
试样 OTUs Shannon Chao Simpson Coverage CSN1 900 5.12 900.04 0.02 0.99 CSN2 170 2.03 252.83 0.27 0.99 -
[1] 刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
[2] DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210. doi: 10.1016/j.ecoleng.2008.12.029
[3] BANG S, MIN S H, BANG S S. Application of microbiologically induced soil stabilization technique for dust suppression[J]. International Journal of Geoengineering, 2011, 3(2): 27-37.
[4] MARTINEZ B C, DEJONG J T, GINN T R, et al. Experimental optimization of microbial-induced carbonate precipitation for soil improvement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(4): 587-598. doi: 10.1061/(ASCE)GT.1943-5606.0000787
[5] HAMMES F, BOON N, DE VILLIERS J, et al. Strain-specific ureolytic microbial calcium carbonate precipitation[J]. Applied and Environmental Microbiology, 2003, 69(8): 4901-4909. doi: 10.1128/AEM.69.8.4901-4909.2003
[6] GOMEZ M G, ANDERSON C M, GRADDY C M R, et al. Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(5): 04016124. doi: 10.1061/(ASCE)GT.1943-5606.0001640
[7] GOMEZ M G, GRADDY C M R, DEJONG J T, et al. Stimulation of native microorganisms for biocementation in samples recovered from field-scale treatment depths[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(1): 04017098. doi: 10.1061/(ASCE)GT.1943-5606.0001804
[8] BURBANK M B, WEAVER T J, GREEN T L, et al. Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils[J]. Geomicrobiology Journal, 2011, 28(4): 301-312. doi: 10.1080/01490451.2010.499929
[9] 张鑫磊, 陈育民, 张喆, 等. 微生物灌浆加固可液化钙质砂地基的振动台试验研究[J]. 岩土工程学报, 2020, 42(6): 1023-1031. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm ZHANG Xin-lei, CHEN Yu-min, ZHANG Zhe, et al. Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1023-1031. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm
[10] 李昊, 唐朝生, 刘博, 等. 模拟海水环境下MICP固化钙质砂的力学特性[J]. 岩土工程学报, 2020, 42(10): 1931-1939. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010025.htm LI Hao, TANG Chao-Sheng, LIU Bo, et al. Mechanical behavior of MICP-cemented calcareous sand in simulated seawater environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1931-1939. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010025.htm
[11] WANG Y J, HAN X L, JIANG N J, et al. The Effect of enrichment media on the stimulation of native ureolytic bacteria in calcareous sand[J]. International Journal of Environmental Science and Technology, 2020, 17(3): 1795-1808. doi: 10.1007/s13762-019-02541-x
[12] 土工试验规程:SL237—1999[S]. 1999. Specification of Soil Test: SL237—1999[S]. 1999. (in Chinese)
[13] WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Western Australia: Murdoch University, 2004.
[14] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm
[15] 刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm LIU Han-long, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
[16] ZHANG W C, JU Y, ZONG Y W, et al. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level[J]. Environmental Science and Technology, 2018, 52(16): 9266-9276.
[17] 何想, 马国梁, 汪杨, 等. 基于微流控芯片技术的微生物加固可视化研究[J]. 岩土工程学报, 2020, 42(6): 1005-1012. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm HE Xiang, MA Guo-liang, WANG Yang, et al. Visualization investigation of bio-cementation process based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1005-1012. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm
[18] BAI Y H, CHANG Y Y, LIANG J S, et al. Treatment of groundwater containing Mn(II), Fe(II), As(III) and Sb(III) by bioaugmented quartz-sand filters[J]. Water Research, 2016, 106: 126-134.
[19] PARK S C, BAIK K S, KIM M S, et al. Nocardioides dokdonensis sp. nov., an actinomycete isolated from sand sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(11): 2619-2263.
[20] HAFERBURG G, KLOESS G, SCHMITZ W, et al. "Ni-struvite": a new biomineral formed by a nickel resistant Streptomyces acidiscabies[J]. Chemosphere, 2008, 72(3): 517-523.
-
期刊类型引用(3)
1. 黎春林. 考虑主应力偏转的隧道松动土压力计算方法. 河海大学学报(自然科学版). 2025(02): 107-114 . 百度学术
2. 赵凯,谢良甫,钱建固,晋智毅,马莉. 浅埋黄土盾构隧道松动土压力求解与影响因素研究. 现代隧道技术. 2024(S1): 454-465 . 百度学术
3. 陈星欣,何明高,施文城,郭力群. 土岩复合地层盾构地中对接法刀盘拆卸不完全拱压力计算. 岩土工程学报. 2024(12): 2652-2660 . 本站查看
其他类型引用(2)