Experimental study on frost heave in unsaturated coarse-grained soil caused by vapour transfer
-
摘要: 寒区高铁粗粒土路基冻胀机理问题一直困扰科研和工程技术人员,气态水迁移诱发冻胀是目前广被关注的解释之一,但在直接试验证据方面研究较少。为证明气态水迁移可以诱发非饱和粗粒土冻胀,并进一步阐释非饱和粗粒土的冻胀机制,基于新开发的粗粒土冻胀试验仪,开展了系列的室内试验。结果表明,仅有气态水补给条件下,无细粒含量的粗粒土发生了明显冻胀,试验测得6 cm高的土柱336 h的冻胀量可达8.30 mm,672 h的冻胀量达到23.46 mm。基于X-CT扫描试验观察了气态水补给下冻胀粗粒土中冰的分布特征,发现在恒定温度梯度下冻土中无层状分布的冰透镜体,仅存在一条包含分凝冰和饱和孔隙冰的水平冻结带。冻胀试验发现土柱的冻胀量随温度梯度的增大而增大;梯度降温更有利于气态水的迁移补给,并导致更大的冻胀;土柱的初始含水率越高,越不利于气态水在土中的迁移,冻胀量越小。气态水补给诱发冻胀的试验现象,对传统液态水在细颗粒中成冰冻胀的冻土理论形成了较好补充,同时对揭示寒区高速铁路路基的冻胀机制有重要价值。Abstract: The frost heave caused by vapour transfer has recently attracted much attention, but there is little experimental evidence so far. A series of laboratory experiments are carried out by using the newly developed frost heave apparatus. The results show that considerable frost heave occurs in coarse-grained soil with zero fine content (<0.075 mm) while the specimen is subjected to only vapour supply. The observed frost heave in the 6 cm-high specimen reaches 8.30 mm and 23.46 mm after freezing 336 h and 672 h, respectively. The characteristics of ice lens is observed by the X-TC tests, and the distinct ice lens formation is not observed in the specimen. Under the constant temperature gradient, only one horizontal freezing zone containing segregated ice and saturated pore ice rather than layered ice lens in the frozen soil is observed. The results also show that the frost heave increases with the increasing temperature gradient. Ramped freezing is more conducive to vapour transfer, and leads to greater frost heave than step freezing. A higher initial water content of the soil specimen results in a smaller frost heave in coarse-grained soil. This study has important implications to reveal the mechanism of frost heave in high-speed railways in cold regions.
-
Keywords:
- frost heave /
- unsaturated coarse-grained soil /
- vapour transfer /
- experimental study
-
-
表 1 试样的基本物理参数
Table 1 Physical properties of experiment materials
材料 相对质量密度 最大干密度/(g·cm-3) 最小干密度/(g·cm-3) 粗砂(0.5~1.0 mm) 2.63 1.64 1.37 细砾(2.0~5.0 mm) 2.64 1.67 1.45 A组填料(0.075~10 mm) 2.64 1.68 1.47 表 2 试验条件
Table 2 Test conditions
编号 粒径/mm 初始含水率/% 冷温盘设定温度/℃ 试样底部实际温度/℃ 试样顶部实际温度/℃ 冻结时间/h 1 2.0~5.0 3 -15 -10.01 9.69 168 2 2.0~5.0 3 -15 -10.46 10.1 336 3 2.0~5.0 3 -15 -10.20 10.21 672 4 2.0~5.0 3 -5 -2.37 13.89 168 5 2.0~5.0 3 -5 (48 h) / -10 (48 h) /-15 (72 h) -1.68 / -5.26 / -9.98 13.61 / 12.28 / 10.06 168 6 2.0~5.0 0 -15 -9.84 9.38 168 7 2.0~5.0 5 -15 -9.83 10.49 168 8 0.5~1.0 3 -15 -10.39 10.67 168 9 A组填料 3 -15 -10.20 9.50 168 表 3 环境温度和相对湿度的平均值
Table 3 Mean values of air temperature and humidity
试验编号 1,4,5 2 3 6,7 8 9 温度/℃ 27.27 25.31 25.87 29.51 27.66 27.35 相对湿度/% 72.62 69.45 69.25 74.96 70.81 74.39 -
[1] 赵国堂, 蒋金洋, 崔颖辉, 等. 高速铁路路基填料中细颗粒分布特征及其对冻胀的影响[J]. 铁道学报, 2017, 39(10): 1-9. doi: 10.3969/j.issn.1001-8360.2017.10.001 ZHAO Guo-tang, JIANG Jin-yang, CUI Ying-hui, et al. Distribution features of fine-grain in filling materials of high-speed railway subgrade and its impact on frost heaving[J]. Journal of the China Railway Society, 2017, 39(10): 1-9. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.10.001
[2] 蔡德钩. 高速铁路季节性冻土路基冻胀时空分布规律试验[J]. 中国铁道科学, 2016, 37(3): 16-21. doi: 10.3969/j.issn.1001-4632.2016.03.003 CAI De-gou. Test on frost heaving spatial-temporal distribution of high speed railway subgrade in seasonal frozen soil region[J]. China Railway Science, 2016, 37(3): 16-21. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.03.003
[3] 铁路路基设计规范:TB 10001—2016[S]. 2017. Code for Design of Railway Earth Structure: TB 10001—2016[S]. 2017. (in Chinese)
[4] 叶阳升, 王仲锦, 程爱君, 等. 路基的填料冻胀分类及防冻层设置[J]. 中国铁道科学, 2007, 28(1): 1-7. doi: 10.3321/j.issn:1001-4632.2007.01.001 YE Yang-sheng, WANG Zhong-jin, CHENG Ai-jun, et al. Frost heave classification of railway subgrade filling material and the design of anti-freezing layer[J]. China Railway Science, 2007, 28(1): 1-7. (in Chinese) doi: 10.3321/j.issn:1001-4632.2007.01.001
[5] NIU F J, LI A Y, LUO J, et al. Soil moisture, ground temperatures, and deformation of a high-speed railway embankment in Northeast China[J]. Cold Regions Science and Technology, 2017, 133: 7-14. doi: 10.1016/j.coldregions.2016.10.007
[6] 盛岱超, 张升, 李希. 高速列车与路基冻胀相互作用机理[J]. 岩土工程学报, 2013, 35(12): 2186-2191. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312008.htm SHENG Dai-chao, ZHANG Sheng, LI Xi. Effects of train loads on frost heave of embankments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2186-2191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312008.htm
[7] BESKOW G. Soil freezing and frost heaving with special application to roads and railroads[J]. Swedish Geology Survey Yearbook (Series C), 1935, 26(3): 375.
[8] SHE W, WEI L S, ZHAO G T, et al. New insights into the frost heave behavior of coarse grained soils for high-speed railway roadbed: Clustering effect of fines[J]. Cold Regions Science and Technology, 2019, 167: 102863. doi: 10.1016/j.coldregions.2019.102863
[9] NIU F J, ZHENG H, LI A Y. The study of frost heave mechanism of high-speed railway foundation by field-monitored data and indoor verification experiment[J]. Acta Geotechnica, 2020, 15(3): 581-593. doi: 10.1007/s11440-018-0740-8
[10] EIGENBROD K D, KENNEPOHL G J A. Moisture accumulation and pore water pressures at base of pavements[J]. Transportation Research Record, 1996, 1546: 151-161. doi: 10.1177/0361198196154600117
[11] 张中琼. 多年冻土区沥青路面热效应机理研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2012. ZHANG Zhong-qiong. Study on the Mechanism of Asphalt Pavement's Thermal Effects in Permafrost Regions[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2012, Lanzhou. (in Chinese)
[12] 张升, 贺佐跃, 滕继东, 等. 非饱和土水汽迁移与相变:两类“锅盖效应”的试验研究[J]. 岩土工程学报, 2017, 39(5): 961-968. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705029.htm ZHANG Sheng, HE Zuo-yue, TENG Ji-dong, et al. Water vapor transfer and phase change in unsaturated soils: experimental study on two types of canopy effect[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 961-968. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705029.htm
[13] TENG J, SHAN F, HE Z, et al. Experimental study of ice accumulation in unsaturated clean sand[J]. Géotechnique, 2019, 69(3): 251-259. doi: 10.1680/jgeot.17.P.208
[14] GAO J Q, LAI Y M, ZHANG M Y, et al. Experimental study on the water-heat-vapor behavior in a freezing coarse-grained soil[J]. Applied Thermal Engineering, 2018, 128: 956-965. doi: 10.1016/j.applthermaleng.2017.09.080
[15] ZHANG S, TENG J D, HE Z Y, et al. Importance of vapor flow in unsaturated freezing soil: a numerical study[J]. Cold Regions Science and Technology, 2016, 126: 1-9. doi: 10.1016/j.coldregions.2016.02.011
[16] TENG J D, LIU J L, ZHANG S, et al. Modelling frost heave in unsaturated coarse-grained soils[J]. Acta Geotechnica. 2020, 15(11): 3307-3320. doi: 10.1007/s11440-020-00956-2
[17] PENNER E. Heaving pressure in soils during unidirectional freezing[J]. Canadian Geotechnical Journal, 1967, 4(4): 398-408. doi: 10.1139/t67-067
[18] O'NEILL K, MILLER R D. Exploration of a rigid ice model of frost heave[J]. Water Resources Research, 1985, 21(3): 281-296. doi: 10.1029/WR021i003p00281
[19] SHENG D, AXELSSON K, KNUTSSON S. Frost heave due to ice lens formation in freezing soils[J]. Hydrology Research, 1995, 26(2): 125-146. doi: 10.2166/nh.1995.0008
[20] THOMAS H R, CLEALL P, LI Y C, et al. Modelling of cryogenic processes in permafrost and seasonally frozen soils[J]. Géotechnique, 2009, 59(3): 173-184. doi: 10.1680/geot.2009.59.3.173
[21] LAI Y M, PEI W S, ZHANG M Y, et al. Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil[J]. International Journal of Heat and Mass Transfer, 2014, 78: 805-819. doi: 10.1016/j.ijheatmasstransfer.2014.07.035
[22] KONRAD J M, MORGENSTERN N R. A mechanistic theory of ice lens formation in fine-grained soils[J]. Canadian Geotechnical Journal, 1980, 17(4): 473-486. doi: 10.1139/t80-056
[23] KONRAD J M. Estimation of the segregation potential of fine-grained soils using the frost heave response of two reference soils[J]. Canadian Geotechnical Journal, 2005, 42(1): 38-50. doi: 10.1139/t04-080
[24] DASH J G, REMPEL A W, WETTLAUFER J S. The physics of premelted ice and its geophysical consequences[J]. Reviews of Modern Physics, 2006, 78(3): 695-741. doi: 10.1103/RevModPhys.78.695
[25] SARUYA T, KURITA K, REMPEL A W. Experimental constraints on the kinetics of ice lens initiation and growth[J]. Physical Review E, 2013, 87(3): 032404. doi: 10.1103/PhysRevE.87.032404
[26] XIA D. Frost Heave Studies Using Digital Photographic Technique[D]. Edmonton: University of Alberta, 2006.
[27] ARENSON L, SEGO D, TAKE W. Measurement of ice lens growth and soil consolidation during frost penetration using particle image velocimetry (PIV)[C]//60th Canadian Geotechnical Conference, 2007, Ottawa.
[28] ZHENG H, SASAKI Y, KANIE S. Image processing method for observing ice lenses produced by the frost heave process[J]. Cold Regions Science and Technology, 2020, 171: 102977. doi: 10.1016/j.coldregions.2019.102977
[29] 周永毅, 张建经. 一种新型冻土可视化试验系统及其在冻融试验中的应用[J]. 岩石力学与工程学报, 2020, 39(8): 1671-1681. doi: 10.13722/j.cnki.jrme.2020.0036 ZHOU Yong-yi, ZHANG Jian-jing. A novel visualization apparatus for freezing soils and its application in freezing-thawing test[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1671-1681. (in Chinese) doi: 10.13722/j.cnki.jrme.2020.0036