Pressure of surrounding rock of deep-buried loess shield tunnel
-
摘要: 随着盾构隧道工程的发展,越来越多的深埋黄土盾构隧道逐步出现。对其围岩压力进行准确计算对衬砌设计及服役期的安全评价具有重要意义。围绕深埋黄土盾构隧道围岩压力的计算,考虑盾构隧道衬砌与围岩的径向变形连续条件,基于芬纳公式,推导了盾构隧道衬砌内力、围岩应力及围岩变形的解析解;引入黄土结构性参数,给出了适用黄土盾构隧道的围岩压力解析解;结合隧道开挖后围岩的广义剪应变,构建了黄土隧道围岩结构性参数的求解方法;结合黄土结构性参数,讨论了围岩增湿对黄土结构性参数及围岩压力的影响。研究发现:广义剪应变在塑性区内沿径向增大,在弹性区内逐渐减小,2倍塑性区半径外基本稳定;围岩的黄土结构性参数在塑性区内可认为均匀分布;围岩含水率由2%增加至20%时,塑性区的扩大幅度约为33%,围岩压力的增幅约为10%。研究成果以期对深埋黄土盾构隧道的围岩压力计算提供思路。Abstract: With the development of shield tunnel engineering, more and more deep-buried loess shield projects have gradually appeared. The calculation of pressure of the surrounding rock is of great significance to the design of linings and safety evaluation during the service period. The aim of this study is to establish a theoretical solution for pressure of the surrounding rock of deep-buried loess shield tunnel. With the consideration of the continuous conditions of the radial deformation at the interface between the linings and the surrounding rock, the analytical solutions for forces and displacements of the linings and surrounding rock are derived based on the Fenner formula. Then, the analytical solution of pressure of the surrounding rock applicable to loess shield tunnel is given by introducing the structural parameters of loess. Considering the generalized shear strain of the surrounding rock after tunnel excavation, a solving method for the structural parameters of surrounding rock of loess tunnel is given. The influences of humidification on the structural parameters of loess and the pressure of surrounding rock are then discussed by introducing the surrounding rock structural parameters of loess. It is found that the generalized shear strain increases radially in the plastic zone and gradually decreases in the elastic zone. It is basically stable outside the twice the radius of the plastic zone. The structural parameters of loess of the surrounding rock can be recognized as evenly distributed in the plastic zone. When the water content of rock increases from 2% to 20%, the expansion of the plastic zone is about 33%, and the increase of the pressure of the surrounding rock is about 10%. The research results are expected to provide ideas for the calculation of pressure of the surrounding rock of deep-buried loess shield tunnels.
-
Keywords:
- shield tunnel /
- loess /
- surrounding rock pressure /
- Fenner formula /
- structural parameter
-
-
表 1 计算参数取值表
Table 1 Values of calculation parameters
材料 弹性模量E/GPa 泊松比μ 重度 γ /(kN·m-3)黏聚力c/kPa 内摩擦角φ/(°) 围岩 2 0.37 22 20 11.5 衬砌 17 0.20 25 — — -
[1] TERZAGHI K. Theoretical Soil Mechanics[M]. Hoboken: John Wiley and Sons, 1943.
[2] LI S, JIANIE Y C, HO I H, et al. Experimental and numerical analyses for earth pressure distribution on high-filled cut-and-cover tunnels[J]. KSCE Journal of Civil Engineering, 2020, 24(6): 1903-1913. doi: 10.1007/s12205-020-1693-7
[3] HAN L, YE G L, CHEN J J, et al. Pressures on the lining of a large shield tunnel with a small overburden: a case study[J]. Tunnelling and Underground Space Technology, 2017, 64(8): 1-9.
[4] 何川, 张景, 封坤. 盾构隧道结构计算分析方法研究[J]. 中国公路学报, 2017, 30(8): 1-14. doi: 10.3969/j.issn.1001-7372.2017.08.001 HE Chuan, ZHANG Jing, FENG Kun. Research on structural analysis method of shield tunnels[J]. China Journal of Highway and Transport, 2017, 30(8): 1-14. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.001
[5] TAKANO Y H, WORKING GRP NO.2 I T A. Guidelines for the design of shield tunnel lining[J]. Tunnelling and Underground Space Technology, 2000, 15(3): 303-331. doi: 10.1016/S0886-7798(00)00058-4
[6] CHEN K H, PENG F L. An improved method to calculate the vertical earth pressure for deep shield tunnel in Shanghai soil layers[J]. Tunnelling and Underground Space Technology, 2018, 75(5): 43-66.
[7] 卢钦武, 邓涛, 关振长. 水平地震作用下浅埋隧道围岩压力的计算方法研究[J]. 岩土工程学报, 2020, 42(6): 1093-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006016.htm LU Qin-wu, DENG Tao, GUAN Zhen-chang. Ground loading of shallow tunnels under seismic scenario[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1093-1100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006016.htm
[8] 王明年, 王志龙, 桂登斌, 等. 考虑开挖方法影响的深埋隧道围岩形变压力计算方法研究[J/OL]. 西南交通大学学报, 1-10. WANG Ming-nian, WANG Zhi-long, GUI Deng-bin, et al. Study on deformation load calculation method of surrounding rock in deep-buried tunnel considering the influence of excavation method[J/OL]. Journal of Southwest Jiaotong University, 1-10. (in Chinese)
[9] 赵占厂, 谢永利, 杨晓华, 等. 黄土公路隧道围岩压力测试分析[J]. 现代隧道技术, 2003, 40(2): 58-61. doi: 10.3969/j.issn.1009-6582.2003.02.014 ZHAO Zhan-chang, XIE Yong-li, YANG Xiao-hua, et al. Ground pressure measurement and analysis for highway tunnels located in loess[J]. Modern Tunnelling Technology, 2003, 40(2): 58-61. (in Chinese) doi: 10.3969/j.issn.1009-6582.2003.02.014
[10] 赵占厂, 谢永利. 黄土公路隧道结构设计与施工中的若干问题[J]. 现代隧道技术, 2008, 45(6): 56-60, 81. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200806013.htm ZHAO Zhan-chang, XIE Yong-li. Some problems about structural design and construction for highway loess tunnels[J]. Modern Tunnelling Technology, 2008, 45(6): 56-60, 81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200806013.htm
[11] 王建宇. 对形变压力的认识——隧道围岩挤压性变形问题探讨[J]. 现代隧道技术, 2020, 57(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202004001.htm WANG Jian-yu. The key way is to release the genuine rock pressure—discussion on problems of tunnelling in squeezing ground[J]. Modern Tunnelling Technology, 2020, 57(4): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202004001.htm
[12] 王明年, 王志龙, 张霄, 等. 深埋隧道围岩形变压力计算方法研究[J]. 岩土工程学报, 2020, 42(1): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001015.htm WANG Ming-nian, WANG Zhi-long, ZHANG Xiao, et al. Method for calculating deformation pressure of surrounding rock of deep-buried tunnels[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 81-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001015.htm
[13] WANG M N, DONG Y C, YU L. Analytical solution for a loess tunnel based on a bilinear strength criterion[J]. Soil Mechanics and Foundation Engineering, 2020, 57(4): 296-304.
[14] 王明年, 董宇苍, 于丽. 基于双线性强度准则的黄土隧道围岩弹塑性解析解[J]. 中国铁道科学, 2019, 40(6): 68-77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201906010.htm WANG Ming-nian, DONG Yu-cang, YU Li. Elastoplastic analytical solution to surrounding rock of loess tunnel based on bilinear strength criterion[J]. China Railway Science, 2019, 40(6): 68-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201906010.htm
[15] LUO Y B, CHEN J X, GAO S T, et al. Stability analysis of super-large-section tunnel in loess ground considering water infiltration caused by irrigation[J]. Environmental Earth Sciences, 2017, 76(22).
[16] 李国良, 邵生俊, 靳宝成, 等. 黄土隧道地基的湿陷性问题研究[J]. 铁道工程学报, 2015, 32(12): 12-16, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201512003.htm LI Guo-liang, SHAO Sheng-jun, JIN Bao-cheng, et al. Research on the problems of collapsibility of loess tunnel foundation[J]. Journal of Railway Engineering Society, 2015, 32(12): 12-16, 50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201512003.htm
[17] WENG X L, SUN Y F, YAN B H, et al. Centrifuge testing and numerical modeling of tunnel face stability considering longitudinal slope angle and steady state seepage in soft clay[J]. Tunnelling and Underground Space Technology, 2020, 101(7): 1-14.
[18] WENG X L, SUN Y F, ZHANG Y W, et al. Physical modeling of wetting-induced collapse of shield tunneling in loess strata[J]. Tunnelling and Underground Space Technology, 2019, 90(8): 208-219.
[19] 谢定义, 齐吉琳. 土结构性及其定量化参数研究的新途径[J]. 岩土工程学报, 1999, 21(6): 651-656. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199906000.htm XIE Ding-yi, QI Ji-lin. Soil structure characteristics and new approach in research on its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 651-656. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199906000.htm
[20] 谢定义, 齐吉琳, 张振中. 考虑土结构性的本构关系[J]. 土木工程学报, 2000, 33(4): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200004007.htm XIE Ding-yi, QI Ji-lin, ZHANG Zhen-zhong. A constitutive laws considering soil structural properties[J]. China Civil Engineering Journal, 2000, 33(4): 35-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200004007.htm
[21] 陈昌禄, 邵生俊, 邓国华. 土的结构性参数与强度的关系及其在边坡稳定分析中的应用[J]. 中南大学学报(自然科学版), 2010, 41(1): 328-334. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201001056.htm CHEN Chang-lu, SHAO Sheng-jun, DENG Guo-hua. Relationship between soil structural parameters and strength and its application in slope stability analysis[J]. Journal of Central South University (Science and Technology), 2010, 41(1): 328-334. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201001056.htm
[22] 邵生俊, 龙吉勇, 于清高, 等. 湿陷性黄土的结构性参数本构模型[J]. 水利学报, 2006, 37(11): 1315-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200611005.htm SHAO Sheng-jun, LONG Ji-yong, YU Qing-gao, et al. A constitutive model of collapsible loess with structural parameter[J]. Journal of Hydraulic Engineering, 2006, 37(11): 1315-1322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200611005.htm
[23] 邓国华, 邵生俊. 黄土隧道围岩的结构性变化特征分析[J]. 岩土工程学报, 2008, 30(2): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200802011.htm DENG Guo-hua, SHAO Sheng-jun. Variation characteristic analysis of a structural parameter for surrounding soils in loess tunnels[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 219-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200802011.htm
[24] 邓国华, 邵生俊, 陈昌禄, 等. 一个可考虑球应力和剪应力共同作用的结构性参数[J]. 岩土力学, 2012, 33(8): 2310-2314. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201208014.htm DENG Guo-hua, SHAO Sheng-jun, CHEN Chang-lu, et al. A structural parameter reflecting coupling action between shear stress and spherical stress[J]. Rock and Soil Mechanics, 2012, 33(8): 2310-2314. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201208014.htm
[25] 邓国华. 真三轴条件下黄土的结构性参数及结构性本构关系研究[D]. 西安: 西安理工大学, 2009. DENG Guo-hua. Research on Structure Parameter of Loess and Structure Constitutive Relations under Ture Tri-Axial Condition[D]. Xi'an: Xi'an University of Technology, 2009. (in Chinese)
[26] 邓国华, 邵生俊, 佘芳涛. 结构性黄土的修正剑桥模型[J]. 岩土工程学报, 2012, 34(5): 834-841. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205010.htm DENG Guo-hua, SHAO Sheng-jun, SHE Fang-tao. Modified Cam-clay model of structured loess[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 834-841. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205010.htm
[27] 邹志林. 海底取水盾构隧道双层衬砌结构受力特性研究[D]. 长沙: 中南大学, 2013. ZOU Zhi-lin. Study of Mechanical Characters of Subsea Water-Intaken Shield Tunnel with Double Lining[D]. Changsha: Central South University, 2013. (in Chinese)
[28] 江英超, 何川, 方勇, 等. 盾构施工对黄土地层的扰动及管片衬砌受荷特征[J]. 中南大学学报(自然科学版), 2013, 44(7): 2934-2941. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201307043.htm JIANG Ying-chao, HE Chuan, FANG Yong, et al. Soil disturbance caused by shield tunneling and segment lining loading characteristics in loess strata[J]. Journal of Central South University (Science and Technology), 2013, 44(7): 2934-2941. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201307043.htm
[29] 王俊, 方勇, 何川, 等. 盾构隧道施工对砂性地层的扰动及管片受荷特征[J]. 地下空间与工程学报, 2015, 11(1): 156-162, 170. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201501024.htm WANG Jun, FANG Yong, HE Chuan, et al. Disturbance of shield tunnel construction to sandy stratum and load bearing characteristics of segment lining[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(1): 156-162, 170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201501024.htm
[30] 王明年, 郭军, 罗禄森, 等. 高速铁路大断面深埋黄土隧道围岩压力计算方法[J]. 中国铁道科学, 2009, 30(5): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200905010.htm WANG Ming-nian, GUO Jun, LUO Lu-sen, et al. Calculation method for the surrounding rock pressure of deep buried large sectional loess tunnel of high-speed railway[J]. China Railway Science, 2009, 30(5): 53-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200905010.htm