• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于现场实测数据统计的隧道围岩全过程变形规律及稳定性判据确定

孙振宇, 张顶立, 侯艳娟, 李奥

孙振宇, 张顶立, 侯艳娟, 李奥. 基于现场实测数据统计的隧道围岩全过程变形规律及稳定性判据确定[J]. 岩土工程学报, 2021, 43(7): 1261-1270. DOI: 10.11779/CJGE202107011
引用本文: 孙振宇, 张顶立, 侯艳娟, 李奥. 基于现场实测数据统计的隧道围岩全过程变形规律及稳定性判据确定[J]. 岩土工程学报, 2021, 43(7): 1261-1270. DOI: 10.11779/CJGE202107011
SUN Zhen-yu, ZHANG Ding-li, HOU Yan-juan, LI Ao. Whole-process deformation laws and determination of stability criterion of surrounding rock of tunnels based on statistics of field measured data[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1261-1270. DOI: 10.11779/CJGE202107011
Citation: SUN Zhen-yu, ZHANG Ding-li, HOU Yan-juan, LI Ao. Whole-process deformation laws and determination of stability criterion of surrounding rock of tunnels based on statistics of field measured data[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1261-1270. DOI: 10.11779/CJGE202107011

基于现场实测数据统计的隧道围岩全过程变形规律及稳定性判据确定  English Version

基金项目: 

国家自然科学基金项目 51738002

中国国家铁路集团有限公司科技研究开发计划项目 P2109G038

详细信息
    作者简介:

    孙振宇(1993— ),男,博士,讲师,主要从事隧道及地下工程方面的研究工作。E-mail:zhenyus@bjtu.edu.cn

    通讯作者:

    张顶立, E-mail:zhang-dingli@263.net

  • 中图分类号: TU43;U451

Whole-process deformation laws and determination of stability criterion of surrounding rock of tunnels based on statistics of field measured data

  • 摘要: 隧道围岩全过程变形是认识支护与围岩相互作用演化机制的基本前提,也是围岩稳定性评价和支护设计的重要依据。在对40座隧道与地下工程围岩全过程变形进行收集和整理的基础上,系统分析了隧道围岩全过程变形及其关键节点、围岩变形速率与变形加速度分布规律与影响因素。研究表明:隧道围岩超前变形量和基本稳定变形量随施工进度呈总体增大趋势,随开挖半径呈减小趋势,而相应的位移释放率则无明显相关关系;随着围岩级别的增大,超前变形量与基本稳定变形量增大,而相应的位移释放率则反而减小;通过改进Hoek公式对深、浅埋条件下围岩全过程变形进行拟合,拟合优度在0.95以上,可为围岩损失位移的求解提供依据;隧道围岩变形速率随时间发展趋势为先增大后减小,而变形加速度则表现出“正弦曲线”特征,二者随隧道半径和施工速率变化显著。根据分析结果,指出对于不良地质条件下的大断面隧道,围岩变形速率小而变形持续时间长,此时围岩稳定性的判断应以变形加速度作为主要指标,并进一步给出了变形加速度阈值的确定方法。
    Abstract: Deformation of the surrounding rock during the whole excavation process is the basic premise to understand the evolution mechanism of interaction between the supports and the surrounding rock, which is also an important reference for stability evaluation of the surrounding rock and design of the supports. On the basis of collecting the deformation of the surrounding rock during the whole excavation process of 40 tunnels and underground projects, the whole process deformation and its key nodes, the distribution laws of deformation rate and deformation acceleration of the surrounding rock and the influencing factors are systematically analyzed. The results show that the advance deformation and basically stable deformation of the surrounding rock increase with the construction speed and decrease with the excavation radius, while the corresponding displacement release rates have no obvious correlation. With the increase of the surrounding rock, the advance deformation and basic stable deformation increase, and the corresponding displacement release rate decreases instead. By improving the Hoek’s formula, the whole-process deformation of the surrounding rock is fitted, and the goodness of fitting is above 0.95, which can provide a basis for the solution of loss displacement. The deformation rate of the surrounding rock first increases and then decreases with time, while the deformation acceleration shows the characteristics of "sinusoidal curve", both of which change significantly with tunnel radius and construction speed. According to the analysis results, it is pointed out that the deformation rate of the surrounding rock is small and the deformation duration is long for the large-section tunnels under unfavorable geological conditions, and the deformation acceleration should be taken as the main index to judge the stability of the surrounding rock. Furthermore, the determination method for deformation acceleration threshold is given.
  • 图  1   典型隧道围岩全过程曲线

    Figure  1.   Curves of settlement of surrounding rock

    图  2   超前变形与施工进度关系

    Figure  2.   Relationship between deformation at tunnel face and construction speed

    图  3   超前变形与等效开挖半径关系

    Figure  3.   Relationship between deformation at tunnel face and equivalent excavation radius

    图  4   超前变形与围岩级别关系

    Figure  4.   Relationship between deformation at tunnel face and rock grade

    图  5   基本稳定变形与施工进度关系

    Figure  5.   Relationship between basically stable deformation and construction speed

    图  6   基本稳定变形与等效开挖半径关系

    Figure  6.   Relationship between basically stable deformation and equivalent excavation radius

    图  7   基本稳定变形与围岩级别关系

    Figure  7.   Relationship between basically stable deformation and rock grade

    图  8   归一化隧道围岩全过程变形实测曲线

    Figure  8.   Measured curves of normalized deformations surrounding rock of tunnel of during whole excavation process

    图  9   隧道围岩全过程变形曲线拟合结果

    Figure  9.   Fitting results of deformations of surrounding rock of tunnel during whole excavation process

    图  10   隧道围岩变形全过程的阶段性

    Figure  10.   Stages of deformation of surrounding rock of tunnel during whole excavation process

    图  11   隧道围岩变形速率时程曲线的影响分析

    Figure  11.   Influence analysis of time-history curve of deformation rate of surrounding rock of tunnel

    图  12   隧道围岩变形加速度时程曲线的影响分析

    Figure  12.   Influence analysis of time-history curve of deformation acceleration of surrounding rock of tunnel

    表  1   隧道围岩全过程变形曲线现场监测统计样本

    Table  1   Statistical samples of in-situ monitoring of deformation of surrounding rock during whole excavation process

    序号工程名称围岩级别等效半径/m施工进度/(m·d-1)施工方法埋深性质
    1大帽山隧道V8.780.80双侧壁导坑法浅埋
    2长安岭隧道IV6.501.21台阶法浅埋
    3毛羽山隧道IV6.751.30台阶法深埋
    4前鸥隧道V9.010.89双侧壁导坑法浅埋
    5贺街隧道V6.800.20CRD法浅埋
    6苏家川隧道V7.361.20台阶法浅埋
    7阌乡隧道V7.300.80双侧壁导坑法浅埋
    8锦屏二级水电站1#隧洞IV6.5011.30全断面法深埋
    9天荒坪电站模型洞II1.980.40台阶法深埋
    10乐疃隧道IV8.942.60CRD法浅埋
    11下沙溪隧道V5.381.00台阶法浅埋
    12锦屏二级地下厂房III10.132.13台阶法深埋
    13阿拉坦隧道V6.151.50台阶法浅埋
    14北山坑探设施平巷II1.452.00全断面深埋
    15Tono矿区试验导坑III1.201.00全断面法深埋
    16黄岛地下油库6#主洞室II12.51.60台阶法深埋
    17紫坪铺导流隧洞III6.014.00台阶法深埋
    18梧村山隧道VI11.421.20CRD法浅埋
    19翔安海底隧道陆域段VI7.391.50CRD法浅埋
    20天恒山隧道V6.330.20CRD法浅埋
    21花甲山隧道V6.502.83台阶法浅埋
    22向家坝水电站中导洞II3.751.70台阶法深埋
    23白鹤滩水电站III11.052.10台阶法深埋
    24桐油山隧道中导洞II2.913.00全断面浅埋
    25二滩水电站III9.181.54台阶法深埋
    26溪洛渡水电站III8.691.08台阶法深埋
    27官地水电站III9.131.20台阶法深埋
    28深圳地铁一期06标段VI2.931.67台阶法浅埋
    29瀑布沟水电站II9.601.63台阶法深埋
    30大广坝水电站II5.251.74台阶法浅埋
    31水牛家1号隧道V3.501.35台阶法深埋
    32江垭水电站III20.003.00台阶法浅埋
    33构皮滩尾水隧洞V17.201.20台阶法深埋
    34芙蓉路电缆隧道III1.605.30全断面浅埋
    35锦屏一级水电站主变室III6.181.50台阶法深埋
    36北京地铁14号线11标VI3.098.40全断面法浅埋
    37 济宁三号煤矿 III1.602.89全断面深埋
    38阳泉矿区巷道III5.002.40全断面深埋
    39沙曲矿巷道IV4.601.70全断面深埋
    40北京地铁8号线二期V3.1510.00全断面法浅埋
    下载: 导出CSV

    表  2   隧道围岩变形分布统计

    Table  2   Distribution of deformation of surrounding rock of tunnel  (mm)

    埋深条件最大变形超前变形基本稳定变形
    浅埋84.5332.6881.96
    深埋62.0019.3159.20
    平均值74.2726.4171.94
    下载: 导出CSV

    表  3   不同围岩级别下超前变形量实测数据统计表

    Table  3   Statistics of mean values of deformations at tunnel face for different rock grades

    围岩级别IIIIIIVVVI
    超前变形量均值/mm3.47.6273645
    开挖面位移释放率均值0.390.360.340.310.27
    下载: 导出CSV

    表  4   不同围岩级别下基本稳定变形量实测数据统计表

    Table  4   Statistics of mean values of basically stable deformations for different rock grades

    围岩级别IIIIIIVVVI
    基本稳定变形量均值/mm9187189108
    基本稳定位移释放率均值0.9710.9610.9560.9510.942
    下载: 导出CSV

    表  5   隧道围岩全过程变形曲线方程参数拟合结果

    Table  5   Fitting results of parameters in equations for deformations of surrounding rock of tunnel during whole excavation process

    深埋条件 浅埋条件
    工程序号ABCR2 工程序号ABCR2
    3-1.4539-1.80590.97720.9967 1-0.4594-1.80730.96510.9984
    8-1.2871-2.02150.97210.9983 2-0.6913-1.44140.93910.9896
    9-1.8632-1.68500.98540.9960 4-0.8916-1.74510.98710.9896
    12-0.7040-2.26410.99140.9919 5-0.6353-1.49540.98240.9825
    14-2.1503-1.87910.98920.9864 6-0.5113-1.87740.95680.9967
    15-0.6059-1.40780.92400.9927 7-1.0168-1.54160.99200.9736
    16-0.6586-1.48920.97640.9832 10-0.8437-1.54640.90230.9908
    17-1.1605-2.02630.90210.9956 11-0.8885-1.50040.94220.9869
    22-1.0088-1.32910.98200.9959 13-0.5404-1.18480.94520.9927
    23-2.5022-1.97140.98950.9745 18-0.9643-2.06720.90960.9801
    25-1.6989-1.58050.97210.9953 19-1.0684-1.89920.96870.9906
    26-1.9203-1.79460.96610.9973 20-0.4555-1.49460.99420.9784
    27-2.3118-1.61790.97620.9919 21-0.5852-1.55300.97910.9987
    29-2.1661-1.98860.96210.9934 24-1.3618-1.51020.91060.9913
    31-0.6169-1.85090.98110.9986 28-1.3399-1.98380.90230.9926
    33-1.6624-1.72160.96000.9993 30-1.2172-2.12270.92030.9902
    35-1.5154-1.72500.99300.9858 32-1.0591-1.67500.97070.9923
    37-2.0478-2.19040.96310.9983 34-1.3622-1.78170.91760.9980
    38-1.8951-1.73060.97510.9903 36-1.1503-1.58970.97550.9773
    39-2.2807-2.22260.97310.9983 40-0.7955-1.10620.90410.9814
    下载: 导出CSV
  • [1]

    SAKURAI S, TAKEUCHI K. Back analysis of measured displacements of tunnels[J]. Rock Mechanics & Rock Engineering, 1983, 16(3): 173-180.

    [2] 陶连金. 有限元图谱法的位移反分析[J]. 矿山压力与顶板管理, 1990, 7(4): 57-60, 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL199004014.htm

    TAO Lian-jin. Counter analysis of displacement by finite element atlas method[J]. Ground Pressure and Strata Control, 1990, 7(4): 57-60, 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL199004014.htm

    [3] 刘开云, 方昱, 刘保国. 基于进化高斯过程回归算法的隧道工程弹塑性模型参数反演[J]. 岩土工程学报, 2011, 33(6): 883-889. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106011.htm

    LIU Kai-yun, FANG Yu, LIU Bao-guo. Elasto-plastic parameter inversion of tunnel engineering based on genetic-Gaussian process regression algorithm[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 883-889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106011.htm

    [4] 房倩, 粟威, 张顶立, 等. 基于现场监测数据的隧道围岩变形特性研究[J]. 岩石力学与工程学报, 2016, 35(9): 1884-1897. doi: 10.13722/j.cnki.jrme.2014.1663

    FANG Qian, SU Wei, ZHANG Ding-li, et al. Tunnel deformation characteristics based on on-site monitoring data[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1884-1897. (in Chinese) doi: 10.13722/j.cnki.jrme.2014.1663

    [5] 岳广学, 何平, 蔡炜. 隧道开挖过程中地层变形的统计分析[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3793-3803. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2029.htm

    YUE Guang-xue, HE Ping, CAI Wei. Statistic analysis of stratum deformation during tunnel excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3793-3803. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2029.htm

    [6] 张成平, 张顶立, 王梦恕. 大断面隧道施工引起的上覆地铁隧道结构变形分析[J]. 岩土工程学报, 2009, 31(5): 805-810. doi: 10.3321/j.issn:1000-4548.2009.05.027

    ZHANG Cheng-ping, ZHANG Ding-li, WANG Meng-shu. Structural deformation of overlying subway tunnels induced by tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 805-810. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.05.027

    [7] 袁勇, 王胜辉, 杜国平, 等. 双连拱隧道支护体系现场监测试验研究[J]. 岩石力学与工程学报, 2005, 24(3): 480-484. doi: 10.3321/j.issn:1000-6915.2005.03.019

    YUAN Yong, WANG Sheng-hui, DU Guo-ping, et al. In-situ testing study on lining system of double-arched tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 480-484. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.03.019

    [8] LUNARDI PIETRO. 隧道设计与施工—岩土控制变形分析法(ADECO-RS)[M]. 铁道部工程管理中心,译. 北京: 中国铁道出版社, 2011.

    LUNARDI PIETRO. The Design and Construction of Tunnel-Analysis of Controlled Deformation of Rock and Soil[M]. Project Management Center of Ministry of Railways, trans. Beijing: China Railway Publishing House, 2011. (in Chinese)

    [9]

    SATO T, KIKUCHI T, SUGIHARA K. In-situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock at Tono mine, central Japan[J]. Engineering Geology, 2000, 56(1/2): 97-108.

    [10] 娄海成. 浅埋偏压大断面隧道围岩变形与支护受力研究[D]. 北京: 北京交通大学, 2015.

    LOU Hai-cheng. The Study of Strata Deformation and Support Behavior of Tunnel with Shallow Buried Depth and Unsymmetrical Pressure[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese)

    [11] 许有俊, 王雅建, 冯超, 等. 矩形顶管施工引起的地面沉降变形研究[J]. 地下空间与工程学报, 2018, 14(1): 192-199. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201801027.htm

    XU You-jun, WANG Ya-jian, FENG Chao, et al. Research on ground deformation caused by rectangular pipe jacking construction[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(1): 192-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201801027.htm

    [12]

    QIAO L P, LI S C, WANG Z C, et al. Geotechnical monitoring on the stability of a pilot underground crude-oil storage facility during the construction phase in China[J]. Measurement, 2016, 82: 421-431. doi: 10.1016/j.measurement.2016.01.017

    [13] 李鹏飞, 赵勇, 刘建友. 隧道软弱围岩变形特征与控制方法[J]. 中国铁道科学, 2014, 35(5): 55-61. doi: 10.3969/j.issn.1001-4632.2014.05.09

    LI Peng-fei, ZHAO Yong, LIU Jian-you. Deformation characteristics and control method of tunnel with weak surrounding rock[J]. China Railway Science, 2014, 35(5): 55-61. (in Chinese) doi: 10.3969/j.issn.1001-4632.2014.05.09

    [14] 白明洲. 大型地下洞室围岩稳定性的岩体结构控制效应研究[D]. 成都: 成都理工学院, 2000.

    BAI Ming-zhou. Study on Control Effect of Rockmass Structure on Surrounding Rockmass Stability of Huge Underground Cavity[D]. Chengdu: Chengdu University of Technology, 2000. (in Chinese)

    [15] 张顶立, 陈立平. 隧道围岩的复合结构特性及其荷载效应[J]. 岩石力学与工程学报, 2016, 35(3): 456-469. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603003.htm

    ZHANG Ding-li, CHEN Li-ping. Compound structural characteristics and load effect of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 456-469. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603003.htm

    [16] 李世辉. 隧道支护设计新论(典型类比分析法应用和理论)[M]. 北京: 科学出版社, 1999: 99-102.

    LI Shi-hui. A New Concept of Tunnel Support Design-Application and Theory of Precedent Type Analysis[M]. Beijing: Science Press, 1999: 99-102. (in Chinese)

    [17] 铁路隧道设计规范:TB10003—2016[S]. 2016.

    Code for Design of Railway Tunnel: TB10003—2016[S]. 2016. (in Chinese)

    [18]

    VLACHOPOULOS N, DIEDERICHS M S. Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels[J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 131-146.

    [19] 左建平, 孙运江, 王金涛, 等. 大断面破碎巷道全空间桁架锚索协同支护研究[J]. 煤炭科学技术, 2016, 44(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201603001.htm

    ZUO Jian-ping, SUN Yun-jiang, WANG Jin-tao, et al. Study on full space truss and anchor coordinative support of mine large cross-section broken roadway[J]. Coal Science and Technology, 2016, 44(3): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201603001.htm

    [20] 徐营, 张子新. 块裂结构岩质地下洞室松动特征试验研究[J]. 岩土工程学报, 2010, 32(2): 216-224. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201002012.htm

    XU Ying, ZHANG Zi-xin. Experiment study on loose characteristics of underground excavation in block-fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2): 216-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201002012.htm

    [21]

    PANET M, GUENOT A. Analysis of convergence behind the face of a tunnel[C]//Proceedings of the 3rd International Symposium on Tunnelling, 1982, London: 197-204.

    [22]

    CARRANZA-TORRES C, FAIRHURST C. Application of the Convergence-Confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J]. Tunneling and Underground Space Technology, 2000, 15(2): 187-213.

    [23] 孙振宇, 张顶立, 房倩, 等. 隧道初期支护与围岩相互作用的时空演化特性[J]. 岩石力学与工程学报, 2017, 36(增刊2): 3943-3956. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2027.htm

    SUN Zhen-yu, ZHANG Ding-li, FANG Qian, et al. Spatial and temporal evolution characteristics of interaction between primary support and tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 3943-3956. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2027.htm

    [24]

    LI S. An empirical hypothesis of deformation rate ratio criterion[J]. Rock Mechanics and Rock Engineering, 1996, 29(2): 63-72.

    [25] 张顶立, 孙振宇, 侯艳娟. 隧道支护结构体系及其协同作用[J]. 力学学报, 2019, 51(2): 577-593. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201902028.htm

    ZHANG Ding-li, SUN Zhen-yu, HOU Yan-juan. Tunnel support structure system and its synergistic effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 577-593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201902028.htm

  • 期刊类型引用(12)

    1. 李君帮. 基于集成学习模型的隧道围岩变形预测研究. 市政技术. 2025(04): 45-53 . 百度学术
    2. 吴浩,陈运涛,朱赵辉,李秀文,岳强. 改进一维卷积神经网络的隧道围岩收敛变形分级预测. 应用基础与工程科学学报. 2024(01): 145-159 . 百度学术
    3. 陈志敏,赵吉万,龚军,陈宇飞,李增印,孙胜旗. 极高地应力软岩隧道非对称变形机理及支护优化研究. 防灾减灾工程学报. 2024(01): 109-119 . 百度学术
    4. 王琴,陶铁军,李晋,姜坤,张思斌,付定鑫. 复杂煤层组隧道围岩与支护结构施工力学行为. 科学技术与工程. 2024(23): 10105-10117 . 百度学术
    5. 邓日富. 基于多重失稳判据的隧道围岩施工稳定性研究. 西部交通科技. 2024(12): 154-157 . 百度学术
    6. 王述红,董福瑞. 基于变形预测和参数反演的山岭隧道围岩稳定性分析. 岩土工程学报. 2023(05): 1024-1035 . 本站查看
    7. 周凤印,汪先国,于远祥. 施工扰动和孔隙水压力对深埋隧洞开挖预留量的影响. 公路交通科技. 2023(05): 170-177+192 . 百度学术
    8. 张旗,王浩杰,董鹏,张晓平,刘泉声,傅少君. 引汉济渭秦岭隧洞围岩变形规律与拱架受力特征研究. 岩土工程学报. 2023(10): 2180-2187 . 本站查看
    9. 谭潘成. 基于围岩松动圈理论的炭质页岩隧道变形机理研究. 铁道建筑技术. 2023(10): 10-15+29 . 百度学术
    10. 袁鸿鹄,谢文杰,李宏恩. 山岭综合管廊施工期围岩稳定性分析. 太原理工大学学报. 2022(01): 156-161 . 百度学术
    11. 李奥,张顶立,孙振宇,董飞,黄俊. 基于围岩虚拟支护力特性的隧道塌方机制及控制研究. 隧道建设(中英文). 2022(07): 1239-1247 . 百度学术
    12. 温嘉琦,汤雷. 地下工程建设围岩安全控制的技术核心:围岩失稳判据研究综述. 华北水利水电大学学报(自然科学版). 2022(06): 60-70 . 百度学术

    其他类型引用(23)

图(12)  /  表(5)
计量
  • 文章访问数:  605
  • HTML全文浏览量:  47
  • PDF下载量:  230
  • 被引次数: 35
出版历程
  • 收稿日期:  2020-10-29
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回