Whole-process deformation laws and determination of stability criterion of surrounding rock of tunnels based on statistics of field measured data
-
摘要: 隧道围岩全过程变形是认识支护与围岩相互作用演化机制的基本前提,也是围岩稳定性评价和支护设计的重要依据。在对40座隧道与地下工程围岩全过程变形进行收集和整理的基础上,系统分析了隧道围岩全过程变形及其关键节点、围岩变形速率与变形加速度分布规律与影响因素。研究表明:隧道围岩超前变形量和基本稳定变形量随施工进度呈总体增大趋势,随开挖半径呈减小趋势,而相应的位移释放率则无明显相关关系;随着围岩级别的增大,超前变形量与基本稳定变形量增大,而相应的位移释放率则反而减小;通过改进Hoek公式对深、浅埋条件下围岩全过程变形进行拟合,拟合优度在0.95以上,可为围岩损失位移的求解提供依据;隧道围岩变形速率随时间发展趋势为先增大后减小,而变形加速度则表现出“正弦曲线”特征,二者随隧道半径和施工速率变化显著。根据分析结果,指出对于不良地质条件下的大断面隧道,围岩变形速率小而变形持续时间长,此时围岩稳定性的判断应以变形加速度作为主要指标,并进一步给出了变形加速度阈值的确定方法。Abstract: Deformation of the surrounding rock during the whole excavation process is the basic premise to understand the evolution mechanism of interaction between the supports and the surrounding rock, which is also an important reference for stability evaluation of the surrounding rock and design of the supports. On the basis of collecting the deformation of the surrounding rock during the whole excavation process of 40 tunnels and underground projects, the whole process deformation and its key nodes, the distribution laws of deformation rate and deformation acceleration of the surrounding rock and the influencing factors are systematically analyzed. The results show that the advance deformation and basically stable deformation of the surrounding rock increase with the construction speed and decrease with the excavation radius, while the corresponding displacement release rates have no obvious correlation. With the increase of the surrounding rock, the advance deformation and basic stable deformation increase, and the corresponding displacement release rate decreases instead. By improving the Hoek’s formula, the whole-process deformation of the surrounding rock is fitted, and the goodness of fitting is above 0.95, which can provide a basis for the solution of loss displacement. The deformation rate of the surrounding rock first increases and then decreases with time, while the deformation acceleration shows the characteristics of "sinusoidal curve", both of which change significantly with tunnel radius and construction speed. According to the analysis results, it is pointed out that the deformation rate of the surrounding rock is small and the deformation duration is long for the large-section tunnels under unfavorable geological conditions, and the deformation acceleration should be taken as the main index to judge the stability of the surrounding rock. Furthermore, the determination method for deformation acceleration threshold is given.
-
-
表 1 隧道围岩全过程变形曲线现场监测统计样本
Table 1 Statistical samples of in-situ monitoring of deformation of surrounding rock during whole excavation process
序号 工程名称 围岩级别 等效半径/m 施工进度/(m·d-1) 施工方法 埋深性质 1 大帽山隧道 V 8.78 0.80 双侧壁导坑法 浅埋 2 长安岭隧道 IV 6.50 1.21 台阶法 浅埋 3 毛羽山隧道 IV 6.75 1.30 台阶法 深埋 4 前鸥隧道 V 9.01 0.89 双侧壁导坑法 浅埋 5 贺街隧道 V 6.80 0.20 CRD法 浅埋 6 苏家川隧道 V 7.36 1.20 台阶法 浅埋 7 阌乡隧道 V 7.30 0.80 双侧壁导坑法 浅埋 8 锦屏二级水电站1#隧洞 IV 6.50 11.30 全断面法 深埋 9 天荒坪电站模型洞 II 1.98 0.40 台阶法 深埋 10 乐疃隧道 IV 8.94 2.60 CRD法 浅埋 11 下沙溪隧道 V 5.38 1.00 台阶法 浅埋 12 锦屏二级地下厂房 III 10.13 2.13 台阶法 深埋 13 阿拉坦隧道 V 6.15 1.50 台阶法 浅埋 14 北山坑探设施平巷 II 1.45 2.00 全断面 深埋 15 Tono矿区试验导坑 III 1.20 1.00 全断面法 深埋 16 黄岛地下油库6#主洞室 II 12.5 1.60 台阶法 深埋 17 紫坪铺导流隧洞 III 6.01 4.00 台阶法 深埋 18 梧村山隧道 VI 11.42 1.20 CRD法 浅埋 19 翔安海底隧道陆域段 VI 7.39 1.50 CRD法 浅埋 20 天恒山隧道 V 6.33 0.20 CRD法 浅埋 21 花甲山隧道 V 6.50 2.83 台阶法 浅埋 22 向家坝水电站中导洞 II 3.75 1.70 台阶法 深埋 23 白鹤滩水电站 III 11.05 2.10 台阶法 深埋 24 桐油山隧道中导洞 II 2.91 3.00 全断面 浅埋 25 二滩水电站 III 9.18 1.54 台阶法 深埋 26 溪洛渡水电站 III 8.69 1.08 台阶法 深埋 27 官地水电站 III 9.13 1.20 台阶法 深埋 28 深圳地铁一期06标段 VI 2.93 1.67 台阶法 浅埋 29 瀑布沟水电站 II 9.60 1.63 台阶法 深埋 30 大广坝水电站 II 5.25 1.74 台阶法 浅埋 31 水牛家1号隧道 V 3.50 1.35 台阶法 深埋 32 江垭水电站 III 20.00 3.00 台阶法 浅埋 33 构皮滩尾水隧洞 V 17.20 1.20 台阶法 深埋 34 芙蓉路电缆隧道 III 1.60 5.30 全断面 浅埋 35 锦屏一级水电站主变室 III 6.18 1.50 台阶法 深埋 36 北京地铁14号线11标 VI 3.09 8.40 全断面法 浅埋 37 济宁三号煤矿 III 1.60 2.89 全断面 深埋 38 阳泉矿区巷道 III 5.00 2.40 全断面 深埋 39 沙曲矿巷道 IV 4.60 1.70 全断面 深埋 40 北京地铁8号线二期 V 3.15 10.00 全断面法 浅埋 表 2 隧道围岩变形分布统计
Table 2 Distribution of deformation of surrounding rock of tunnel
(mm) 埋深条件 最大变形 超前变形 基本稳定变形 浅埋 84.53 32.68 81.96 深埋 62.00 19.31 59.20 平均值 74.27 26.41 71.94 表 3 不同围岩级别下超前变形量实测数据统计表
Table 3 Statistics of mean values of deformations at tunnel face for different rock grades
围岩级别 II III IV V VI 超前变形量均值/mm 3.4 7.6 27 36 45 开挖面位移释放率均值 0.39 0.36 0.34 0.31 0.27 表 4 不同围岩级别下基本稳定变形量实测数据统计表
Table 4 Statistics of mean values of basically stable deformations for different rock grades
围岩级别 II III IV V VI 基本稳定变形量均值/mm 9 18 71 89 108 基本稳定位移释放率均值 0.971 0.961 0.956 0.951 0.942 表 5 隧道围岩全过程变形曲线方程参数拟合结果
Table 5 Fitting results of parameters in equations for deformations of surrounding rock of tunnel during whole excavation process
深埋条件 浅埋条件 工程序号 A B C R2 工程序号 A B C R2 3 -1.4539 -1.8059 0.9772 0.9967 1 -0.4594 -1.8073 0.9651 0.9984 8 -1.2871 -2.0215 0.9721 0.9983 2 -0.6913 -1.4414 0.9391 0.9896 9 -1.8632 -1.6850 0.9854 0.9960 4 -0.8916 -1.7451 0.9871 0.9896 12 -0.7040 -2.2641 0.9914 0.9919 5 -0.6353 -1.4954 0.9824 0.9825 14 -2.1503 -1.8791 0.9892 0.9864 6 -0.5113 -1.8774 0.9568 0.9967 15 -0.6059 -1.4078 0.9240 0.9927 7 -1.0168 -1.5416 0.9920 0.9736 16 -0.6586 -1.4892 0.9764 0.9832 10 -0.8437 -1.5464 0.9023 0.9908 17 -1.1605 -2.0263 0.9021 0.9956 11 -0.8885 -1.5004 0.9422 0.9869 22 -1.0088 -1.3291 0.9820 0.9959 13 -0.5404 -1.1848 0.9452 0.9927 23 -2.5022 -1.9714 0.9895 0.9745 18 -0.9643 -2.0672 0.9096 0.9801 25 -1.6989 -1.5805 0.9721 0.9953 19 -1.0684 -1.8992 0.9687 0.9906 26 -1.9203 -1.7946 0.9661 0.9973 20 -0.4555 -1.4946 0.9942 0.9784 27 -2.3118 -1.6179 0.9762 0.9919 21 -0.5852 -1.5530 0.9791 0.9987 29 -2.1661 -1.9886 0.9621 0.9934 24 -1.3618 -1.5102 0.9106 0.9913 31 -0.6169 -1.8509 0.9811 0.9986 28 -1.3399 -1.9838 0.9023 0.9926 33 -1.6624 -1.7216 0.9600 0.9993 30 -1.2172 -2.1227 0.9203 0.9902 35 -1.5154 -1.7250 0.9930 0.9858 32 -1.0591 -1.6750 0.9707 0.9923 37 -2.0478 -2.1904 0.9631 0.9983 34 -1.3622 -1.7817 0.9176 0.9980 38 -1.8951 -1.7306 0.9751 0.9903 36 -1.1503 -1.5897 0.9755 0.9773 39 -2.2807 -2.2226 0.9731 0.9983 40 -0.7955 -1.1062 0.9041 0.9814 -
[1] SAKURAI S, TAKEUCHI K. Back analysis of measured displacements of tunnels[J]. Rock Mechanics & Rock Engineering, 1983, 16(3): 173-180.
[2] 陶连金. 有限元图谱法的位移反分析[J]. 矿山压力与顶板管理, 1990, 7(4): 57-60, 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL199004014.htm TAO Lian-jin. Counter analysis of displacement by finite element atlas method[J]. Ground Pressure and Strata Control, 1990, 7(4): 57-60, 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL199004014.htm
[3] 刘开云, 方昱, 刘保国. 基于进化高斯过程回归算法的隧道工程弹塑性模型参数反演[J]. 岩土工程学报, 2011, 33(6): 883-889. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106011.htm LIU Kai-yun, FANG Yu, LIU Bao-guo. Elasto-plastic parameter inversion of tunnel engineering based on genetic-Gaussian process regression algorithm[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 883-889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106011.htm
[4] 房倩, 粟威, 张顶立, 等. 基于现场监测数据的隧道围岩变形特性研究[J]. 岩石力学与工程学报, 2016, 35(9): 1884-1897. doi: 10.13722/j.cnki.jrme.2014.1663 FANG Qian, SU Wei, ZHANG Ding-li, et al. Tunnel deformation characteristics based on on-site monitoring data[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1884-1897. (in Chinese) doi: 10.13722/j.cnki.jrme.2014.1663
[5] 岳广学, 何平, 蔡炜. 隧道开挖过程中地层变形的统计分析[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3793-3803. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2029.htm YUE Guang-xue, HE Ping, CAI Wei. Statistic analysis of stratum deformation during tunnel excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3793-3803. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2029.htm
[6] 张成平, 张顶立, 王梦恕. 大断面隧道施工引起的上覆地铁隧道结构变形分析[J]. 岩土工程学报, 2009, 31(5): 805-810. doi: 10.3321/j.issn:1000-4548.2009.05.027 ZHANG Cheng-ping, ZHANG Ding-li, WANG Meng-shu. Structural deformation of overlying subway tunnels induced by tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 805-810. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.05.027
[7] 袁勇, 王胜辉, 杜国平, 等. 双连拱隧道支护体系现场监测试验研究[J]. 岩石力学与工程学报, 2005, 24(3): 480-484. doi: 10.3321/j.issn:1000-6915.2005.03.019 YUAN Yong, WANG Sheng-hui, DU Guo-ping, et al. In-situ testing study on lining system of double-arched tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 480-484. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.03.019
[8] LUNARDI PIETRO. 隧道设计与施工—岩土控制变形分析法(ADECO-RS)[M]. 铁道部工程管理中心,译. 北京: 中国铁道出版社, 2011. LUNARDI PIETRO. The Design and Construction of Tunnel-Analysis of Controlled Deformation of Rock and Soil[M]. Project Management Center of Ministry of Railways, trans. Beijing: China Railway Publishing House, 2011. (in Chinese)
[9] SATO T, KIKUCHI T, SUGIHARA K. In-situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock at Tono mine, central Japan[J]. Engineering Geology, 2000, 56(1/2): 97-108.
[10] 娄海成. 浅埋偏压大断面隧道围岩变形与支护受力研究[D]. 北京: 北京交通大学, 2015. LOU Hai-cheng. The Study of Strata Deformation and Support Behavior of Tunnel with Shallow Buried Depth and Unsymmetrical Pressure[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese)
[11] 许有俊, 王雅建, 冯超, 等. 矩形顶管施工引起的地面沉降变形研究[J]. 地下空间与工程学报, 2018, 14(1): 192-199. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201801027.htm XU You-jun, WANG Ya-jian, FENG Chao, et al. Research on ground deformation caused by rectangular pipe jacking construction[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(1): 192-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201801027.htm
[12] QIAO L P, LI S C, WANG Z C, et al. Geotechnical monitoring on the stability of a pilot underground crude-oil storage facility during the construction phase in China[J]. Measurement, 2016, 82: 421-431. doi: 10.1016/j.measurement.2016.01.017
[13] 李鹏飞, 赵勇, 刘建友. 隧道软弱围岩变形特征与控制方法[J]. 中国铁道科学, 2014, 35(5): 55-61. doi: 10.3969/j.issn.1001-4632.2014.05.09 LI Peng-fei, ZHAO Yong, LIU Jian-you. Deformation characteristics and control method of tunnel with weak surrounding rock[J]. China Railway Science, 2014, 35(5): 55-61. (in Chinese) doi: 10.3969/j.issn.1001-4632.2014.05.09
[14] 白明洲. 大型地下洞室围岩稳定性的岩体结构控制效应研究[D]. 成都: 成都理工学院, 2000. BAI Ming-zhou. Study on Control Effect of Rockmass Structure on Surrounding Rockmass Stability of Huge Underground Cavity[D]. Chengdu: Chengdu University of Technology, 2000. (in Chinese)
[15] 张顶立, 陈立平. 隧道围岩的复合结构特性及其荷载效应[J]. 岩石力学与工程学报, 2016, 35(3): 456-469. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603003.htm ZHANG Ding-li, CHEN Li-ping. Compound structural characteristics and load effect of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 456-469. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603003.htm
[16] 李世辉. 隧道支护设计新论(典型类比分析法应用和理论)[M]. 北京: 科学出版社, 1999: 99-102. LI Shi-hui. A New Concept of Tunnel Support Design-Application and Theory of Precedent Type Analysis[M]. Beijing: Science Press, 1999: 99-102. (in Chinese)
[17] 铁路隧道设计规范:TB10003—2016[S]. 2016. Code for Design of Railway Tunnel: TB10003—2016[S]. 2016. (in Chinese)
[18] VLACHOPOULOS N, DIEDERICHS M S. Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels[J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 131-146.
[19] 左建平, 孙运江, 王金涛, 等. 大断面破碎巷道全空间桁架锚索协同支护研究[J]. 煤炭科学技术, 2016, 44(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201603001.htm ZUO Jian-ping, SUN Yun-jiang, WANG Jin-tao, et al. Study on full space truss and anchor coordinative support of mine large cross-section broken roadway[J]. Coal Science and Technology, 2016, 44(3): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201603001.htm
[20] 徐营, 张子新. 块裂结构岩质地下洞室松动特征试验研究[J]. 岩土工程学报, 2010, 32(2): 216-224. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201002012.htm XU Ying, ZHANG Zi-xin. Experiment study on loose characteristics of underground excavation in block-fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2): 216-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201002012.htm
[21] PANET M, GUENOT A. Analysis of convergence behind the face of a tunnel[C]//Proceedings of the 3rd International Symposium on Tunnelling, 1982, London: 197-204.
[22] CARRANZA-TORRES C, FAIRHURST C. Application of the Convergence-Confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J]. Tunneling and Underground Space Technology, 2000, 15(2): 187-213.
[23] 孙振宇, 张顶立, 房倩, 等. 隧道初期支护与围岩相互作用的时空演化特性[J]. 岩石力学与工程学报, 2017, 36(增刊2): 3943-3956. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2027.htm SUN Zhen-yu, ZHANG Ding-li, FANG Qian, et al. Spatial and temporal evolution characteristics of interaction between primary support and tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 3943-3956. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2027.htm
[24] LI S. An empirical hypothesis of deformation rate ratio criterion[J]. Rock Mechanics and Rock Engineering, 1996, 29(2): 63-72.
[25] 张顶立, 孙振宇, 侯艳娟. 隧道支护结构体系及其协同作用[J]. 力学学报, 2019, 51(2): 577-593. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201902028.htm ZHANG Ding-li, SUN Zhen-yu, HOU Yan-juan. Tunnel support structure system and its synergistic effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 577-593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201902028.htm
-
期刊类型引用(12)
1. 李君帮. 基于集成学习模型的隧道围岩变形预测研究. 市政技术. 2025(04): 45-53 . 百度学术
2. 吴浩,陈运涛,朱赵辉,李秀文,岳强. 改进一维卷积神经网络的隧道围岩收敛变形分级预测. 应用基础与工程科学学报. 2024(01): 145-159 . 百度学术
3. 陈志敏,赵吉万,龚军,陈宇飞,李增印,孙胜旗. 极高地应力软岩隧道非对称变形机理及支护优化研究. 防灾减灾工程学报. 2024(01): 109-119 . 百度学术
4. 王琴,陶铁军,李晋,姜坤,张思斌,付定鑫. 复杂煤层组隧道围岩与支护结构施工力学行为. 科学技术与工程. 2024(23): 10105-10117 . 百度学术
5. 邓日富. 基于多重失稳判据的隧道围岩施工稳定性研究. 西部交通科技. 2024(12): 154-157 . 百度学术
6. 王述红,董福瑞. 基于变形预测和参数反演的山岭隧道围岩稳定性分析. 岩土工程学报. 2023(05): 1024-1035 . 本站查看
7. 周凤印,汪先国,于远祥. 施工扰动和孔隙水压力对深埋隧洞开挖预留量的影响. 公路交通科技. 2023(05): 170-177+192 . 百度学术
8. 张旗,王浩杰,董鹏,张晓平,刘泉声,傅少君. 引汉济渭秦岭隧洞围岩变形规律与拱架受力特征研究. 岩土工程学报. 2023(10): 2180-2187 . 本站查看
9. 谭潘成. 基于围岩松动圈理论的炭质页岩隧道变形机理研究. 铁道建筑技术. 2023(10): 10-15+29 . 百度学术
10. 袁鸿鹄,谢文杰,李宏恩. 山岭综合管廊施工期围岩稳定性分析. 太原理工大学学报. 2022(01): 156-161 . 百度学术
11. 李奥,张顶立,孙振宇,董飞,黄俊. 基于围岩虚拟支护力特性的隧道塌方机制及控制研究. 隧道建设(中英文). 2022(07): 1239-1247 . 百度学术
12. 温嘉琦,汤雷. 地下工程建设围岩安全控制的技术核心:围岩失稳判据研究综述. 华北水利水电大学学报(自然科学版). 2022(06): 60-70 . 百度学术
其他类型引用(23)