• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于分形理论的堆石料颗粒破碎极限和概率研究

陈子玉, 李国英, 魏匡民, 武利强, 朱雨萌

陈子玉, 李国英, 魏匡民, 武利强, 朱雨萌. 基于分形理论的堆石料颗粒破碎极限和概率研究[J]. 岩土工程学报, 2021, 43(7): 1192-1200. DOI: 10.11779/CJGE202107003
引用本文: 陈子玉, 李国英, 魏匡民, 武利强, 朱雨萌. 基于分形理论的堆石料颗粒破碎极限和概率研究[J]. 岩土工程学报, 2021, 43(7): 1192-1200. DOI: 10.11779/CJGE202107003
CHEN Zi-yu, LI Guo-ying, WEI Kuang-min, WU Li-qiang, ZHU Yu-meng. Ultimate state and probability of particle breakage for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1192-1200. DOI: 10.11779/CJGE202107003
Citation: CHEN Zi-yu, LI Guo-ying, WEI Kuang-min, WU Li-qiang, ZHU Yu-meng. Ultimate state and probability of particle breakage for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1192-1200. DOI: 10.11779/CJGE202107003

基于分形理论的堆石料颗粒破碎极限和概率研究  English Version

基金项目: 

国家重点研发计划项目 2018YFC1508500

国家自然科学基金–雅砻江联合基金重点项目 U1765203

中央级公益性科研院所基本科研业务费专项资金项目 Y320004

中央级公益性科研院所基本科研业务费专项资金项目 Y320005

详细信息
    作者简介:

    陈子玉(1992— ),男,博士研究生,主要从事土石坝、堰塞坝数值计算与分析方面的研究工作。E-mail:chdgcdz@163.com

    通讯作者:

    李国英, E-mail:gyli@nhri.cn

  • 中图分类号: TU43

Ultimate state and probability of particle breakage for rockfill materials based on fractal theory

  • 摘要: 为了研究具有分形级配的堆石料颗粒破碎规律与初始分形维数和围压的关系,采用粗粒土大型三轴试验仪,针对不同初始级配的缩尺堆石料,展开不同围压下的颗粒破碎试验,通过计算颗粒破碎前后分形维数的变化,建立围压与颗粒分形维数D的关系式,对现有的颗粒破碎度指标Br的上限值进行修正,利用分形颗粒集合体的概念对颗粒破碎概率进行计算。研究结果表明,堆石料的初始分形维数D0影响其应力应变特征;堆石料颗粒破碎存在极限值,分形维数和破碎度指标与破碎前后分形维数和围压相关;颗粒集合体可以用来计算分形级配堆石料分形维数变化规律,颗粒集合体中颗粒破碎概率与粒径无关,不同粒径颗粒具有相同的破碎概率,随着围压增加破碎概率增加,且存在上下限值,破碎概率与初始分形维数D0相关。
    Abstract: In order to study the particle breakage rules of rockfill with fractal gradation, a large-scale triaxial test equipment for coarse soil is used to carry out particle breakage experiments under different confining pressures for scaled rockfill materials with different initial gradations. By calculating the change of fractal dimension before and after particle breakage, the effects of stress on the fractal dimension are studied, and the existing particle breakage index Br is modified. The probability of particle breakage is calculated by using the concept of fractal particle aggregation. The results show that the initial fractal dimensions affect the stress and strain characteristics of the rockfill materials. The fractal dimension and the index of breakage degree are related to the fractal dimension and confining pressure before and after breakage. The particle aggregation can be used to explain the increase of the fractal dimension in fractal gradation. The probability of particle breakage of particle aggregation is independent of the particle size, and the probability of particle breakage increases with the increase of the confining pressure. The probability of particle breakage has upper and lower limits, and the crushing probability is related to the initial fractal dimension D0.
  • 图  1   大三轴压缩试验仪

    Figure  1.   Large triaxial equipment

    图  2   dmax=60 mm的级配曲线

    Figure  2.   Distribution curves of particles with dmax of 60 mm

    图  3   应力应变曲线

    Figure  3.   Curves of deviatoric stress and volumetric strain vs. axial strain

    图  4   不同围压下颗粒破碎后分形维数增量D-D0

    Figure  4.   Relationship between increase of fractal dimension and confining pressure

    图  5   分形维数极限值与初始分形维数关系图

    Figure  5.   Relationship between ultimate and initial fractal dimensions

    图  6   破碎率计算示意图

    Figure  6.   Definition of particle breakage index Br

    图  7   分形颗粒集合体示意图

    Figure  7.   Classical cubic aggregate

    图  8   颗粒接触示意图

    Figure  8.   Particle contacts at different scales

    表  1   堆石料干密度试验结果

    Table  1   Dry density test results of rockfill materials

    初始分形维数D0最大干密度/(g·cm-3)最小干密度/(g·cm-3)
    2.32.201.60
    2.52.231.69
    2.62.251.74
    2.72.241.77
    下载: 导出CSV

    表  2   堆石料破碎后颗分结果及分形维数D

    Table  2   Grain-size distributions and fractal dimension before and after tests

    初始分形维数D0围压/kPa各粒组颗粒质量分数/%分形维数D拟合度
    <60 mm<40 mm<20 mm<10 mm<5 mm
    2.710088.571.958.447.5
    50010088.773.060.349.02.7140.999
    100010089.074.361.349.22.7200.998
    200010092.975.462.651.52.7370.995
    300010093.176.663.352.52.7450.995
    2.610085.064.448.837.0
    50010087.767.451.640.22.6340.999
    100010087.768.353.442.12.6520.999
    200010091.069.855.344.02.6760.996
    300010091.170.956.344.02.6860.996
    2.510081.657.740.828.9
    50010083.362.545.533.72.5630.999
    100010085.362.947.535.72.5850.999
    200010087.765.449.137.52.6070.998
    300010090.467.051.439.42.6290.996
    2.310075.346.328.517.6
    50010081.752.335.424.32.4260.999
    100010082.855.438.227.02.4700.999
    200010087.558.741.630.72.5220.996
    300010087.760.042.931.72.5370.996
    下载: 导出CSV
  • [1]

    XU Y F, FENG X B, ZHU H G, et al. Fractal model for rockfill shear strength based on particle fragmentation[J]. Granular Matter, 2015, 17(6): 753-761. doi: 10.1007/s10035-015-0591-z

    [2] 孔宪京, 刘京茂, 邹德高, 等. 紫坪铺面板坝堆石料颗粒破碎试验研究[J]. 岩土力学, 2014, 35(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401004.htm

    KONG Xian-jing, LIU Jing-mao, ZOU De-gao, et al. Experimental study of particle breakage of Zipingpu rockfill material[J]. Rock and Soil Mechanics, 2014, 35(1): 35-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401004.htm

    [3] 郭万里, 朱俊高, 钱彬, 等. 粗粒土的颗粒破碎演化模型及其试验验证[J]. 岩土力学, 2019, 40(3): 1023-1029. doi: 10.16285/j.rsm.2017.2005

    GUO Wan-li, ZHU Jun-gao, QIAN Bin, et al. Particle breakage evolution model of coarse-grained soil and its experimental verification[J]. Rock and Soil Mechanics, 2019, 40(3): 1023-1029. (in Chinese) doi: 10.16285/j.rsm.2017.2005

    [4]

    BI J F, LUO X Q, SHEN H, et al. Fractal dimensions of granular materials based on grading curves[J]. Journal of Materials in Civil Engineering, 2018, 30(6): 04018083. doi: 10.1061/(ASCE)MT.1943-5533.0002255

    [5] 傅华, 凌华, 蔡正银. 粗颗粒土颗粒破碎影响因素试验研究[J]. 河海大学学报(自然科学版), 2009, 37(1): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200901018.htm

    FU Hua, LING Hua, CAI Zheng-yin. Influencing factors for particle breakage of coarse grained soil[J]. Journal of Hohai University (Natural Sciences), 2009, 37(1): 75-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200901018.htm

    [6]

    MANDELBROT B B, AIZENMAN M. Fractals: form, chance, and dimension[J]. Physics Today, 1979, 32(5): 65-66. doi: 10.1063/1.2995555

    [7] 朱晟, 邓石德, 宁志远, 等. 基于分形理论的堆石料级配设计方法[J]. 岩土工程学报, 2017, 39(6): 1151-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706028.htm

    ZHU Sheng, DENG Shi-de, NING Zhi-yuan, et al. Gradation design method for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1151-1155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706028.htm

    [8] 吴莹, 马刚, 周伟, 等. 基于分形理论的堆石料级配优化研究[J]. 岩土力学, 2016, 37(7): 1977-1985. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607019.htm

    WU Ying, MA Gang, ZHOU Wei, et al. Optimization of gradation of rockfill materials based on the fractal theory[J]. Rock and Soil Mechanics, 2016, 37(7): 1977-1985. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607019.htm

    [9] 蔡正银, 李小梅, 关云飞, 等. 堆石料的颗粒破碎规律研究[J]. 岩土工程学报, 2016, 38(5): 923-929. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605019.htm

    CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, et al. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605019.htm

    [10] 刘汉龙, 秦红玉, 高玉峰, 等. 堆石粗粒料颗粒破碎试验研究[J]. 岩土力学, 2005, 26(4): 562-566. doi: 10.3969/j.issn.1000-7598.2005.04.011

    LIU Han-long, QIN Hong-yu, GAO Yu-Feng, et al. Experimental study on particle breakage of rockfill and coarse aggregates[J]. Rock and Soil Mechanics, 2005, 26(4): 562-566. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.04.011

    [11]

    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)

    [12] 刘萌成, 高玉峰, 刘汉龙. 模拟堆石料颗粒破碎对强度变形的影响[J]. 岩土工程学报, 2011, 33(11): 1691-1699. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201111010.htm

    LIU Meng-cheng, GAO Yu-feng, LIU Han-long. Effect of particle breakage on strength and deformation of modeled rockfills[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1691-1699. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201111010.htm

    [13]

    EINAV I. Breakage mechanics—part I: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274-1297. doi: 10.1016/j.jmps.2006.11.003

    [14] 高玉峰, 张兵, 刘伟, 等. 堆石料颗粒破碎特征的大型三轴试验研究[J]. 岩土力学, 2009, 30(5): 1237-1240, 1246. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905008.htm

    GAO Yu-feng, ZHANG Bing, LIU Wei, et al. Experimental study on particle breakage behavior of rockfills in large-scale triaxial tests[J]. Rock and Soil Mechanics, 2009, 30(5): 1237-1240, 1246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905008.htm

    [15] 张科芬, 张升, 滕继东, 等. 离散元中破碎自组织对颗粒破碎影响研究[J]. 岩土工程学报, 2018, 40(4): 743-751. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804025.htm

    ZHANG Ke-fen, ZHANG Sheng, TENG Ji-dong, et al. Influences of self-organization of granular materials on particle crushing based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 743-751. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804025.htm

    [16] 孙逸飞, 沈扬, 刘汉龙. 粗粒土的分数阶应变率及其与分形维度的关系[J]. 岩土力学, 2018, 39(增刊1): 297-302, 317. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1037.htm

    SUN Yi-fei, SHEN Yang, LIU Han-long. Fractional strain rate and its relation with fractal dimension of granular soils[J]. Rock and Soil Mechanics, 2018, 39(S1): 297-302, 317. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1037.htm

    [17] 丁建源, 陈晓斌, 张家生, 等. 基于对数几率回归模型的粗颗粒土颗粒破碎过程演化研究[J]. 岩土力学, 2019, 40(4): 1465-1473. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904028.htm

    DING Jian-yuan, CHEN Xiao-bin, ZHANG Jia-sheng, et al. Predicting model for coarse-grained soil particle breakage process using logarithmic probability regression mathematic method[J]. Rock and Soil Mechanics, 2019, 40(4): 1465-1473. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904028.htm

    [18] 张季如, 胡泳, 张弼文, 等. 石英砂砾破碎过程中粒径分布的分形行为研究[J]. 岩土工程学报, 2015, 37(5): 784-791. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505004.htm

    ZHANG Ji-ru, HU Yong, ZHANG Bi-wen, et al. Fractal behavior of particle-size distribution during particle crushing of quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 784-791. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505004.htm

    [19]

    YUAN C Y, WANG Y H, WEI H. The energetics of cataclasis based on breakage mechanics[J]. Journal of Ocean University of China, 2014, 13(1): 1-12.

    [20] 郁邦永, 陈占清, 吴疆宇. 级配饱和破碎岩石压缩变形与分形特性试验研究[J]. 采矿与安全工程学报, 2016, 33(2): 342-347. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201602025.htm

    YU Bang-yong, CHEN Zhan-qing, WU Jiang-yu. Experimental study on compaction and fractal characteristics of saturated broken rocks with different initial gradations[J]. Journal of Mining & Safety Engineering, 2016, 33(2): 342-347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201602025.htm

    [21] 陈镠芬, 高庄平, 朱俊高, 等. 粗粒土级配及颗粒破碎分形特性[J]. 中南大学学报(自然科学版), 2015, 46(9): 3446-3453. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201509038.htm

    CHEN Liu-fen, GAO Zhuang-ping, ZHU Jun-gao. et al. Gradation of coarse grained soil and fractal geometry character of particle breakage[J]. Journal of Central South University (Science and Technology), 2015, 46(9): 3446-3453. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201509038.htm

    [22]

    TSOUNGUI O, VALLET D, CHARMET J C. Numerical model of crushing of grains inside two-dimensional granular materials[J]. Powder Technology, 1999, 105(1): 190-198.

    [23] 凌华, 傅华, 韩华强. 粗粒土强度和变形的级配影响试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S1004.htm

    LING Hua, FU Hua, HAN Hua-qiang. Experimental study on effects of gradation on strength and deformation of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 12-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S1004.htm

    [24]

    COOP M R, SORENSEN K K, BODAS F T, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163.

    [25]

    TURCOTTE D L. Fractals and fragmentation[J]. Journal of Geophysical Research, 1986, 91(B2): 1921-1926.

    [26]

    SAMMIS C, KING G, BIEGEL R. The kinematics of gouge deformation[J]. Pure and Applied Geophysics, 1987, 125(5): 777-812.

    [27] 王益栋. 粗粒土单颗粒压缩破碎强度和压缩变形的分形理论[D]. 上海: 上海交通大学, 2017.

    WANG Yi-dong. Fractal Theory of Single Particle Crushing Strength and Compression Deformation of Coarse Granular Materials[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese)

    [28] 童晨曦, 张升, 李希, 等. 基于Markov链的岩土材料颗粒破碎演化规律研究[J]. 岩土工程学报, 2015, 37(5): 870-877. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505017.htm

    TONG Chen-xi, ZHANG Sheng, LI Xi, et al. Evolution of geotechnical materials based on Markov chain considering particle crushing[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 870-877. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505017.htm

    [29]

    PERFECT E. Fractal models for the fragmentation of rocks and soils: a review[J]. Engineering Geology, 1997, 48(3): 185-198.

图(8)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回