Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于CPTU测试的砂质与粉质土液化概率模型与评价方法研究

段伟, 蔡国军, 赵泽宁, 刘松玉, 董晓强

段伟, 蔡国军, 赵泽宁, 刘松玉, 董晓强. 基于CPTU测试的砂质与粉质土液化概率模型与评价方法研究[J]. 岩土工程学报, 2023, 45(1): 66-74. DOI: 10.11779/CJGE20210645
引用本文: 段伟, 蔡国军, 赵泽宁, 刘松玉, 董晓强. 基于CPTU测试的砂质与粉质土液化概率模型与评价方法研究[J]. 岩土工程学报, 2023, 45(1): 66-74. DOI: 10.11779/CJGE20210645
DUAN Wei, CAI Guojun, ZHAO Zening, LIU Songyu, DONG Xiaoqiang. CPTU-based probabilistic model and evaluation method for liquefaction of sandy and silty soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 66-74. DOI: 10.11779/CJGE20210645
Citation: DUAN Wei, CAI Guojun, ZHAO Zening, LIU Songyu, DONG Xiaoqiang. CPTU-based probabilistic model and evaluation method for liquefaction of sandy and silty soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 66-74. DOI: 10.11779/CJGE20210645

基于CPTU测试的砂质与粉质土液化概率模型与评价方法研究  English Version

基金项目: 

国家重点研发计划项目 2020YFC1807200

国家杰出青年科学基金项目 4222506

国家自然科学基金项目 52108332

国家自然科学基金项目 41877231

国家自然科学基金项目 42072299

安徽省智能地下探测技术研究院开放课题 AHZT2022KF001

详细信息
    作者简介:

    段伟(1989—),男,山西太原人,博士,从事现代原位测试技术等方面的研究工作。E-mail: zbdxdw@163.com

    通讯作者:

    蔡国军, E-mail: focuscai@163.com

  • 中图分类号: TU413

CPTU-based probabilistic model and evaluation method for liquefaction of sandy and silty soils

  • 摘要: 无黏性土的液化与孔隙水压力密切相关,能直接测试孔隙水压力的孔压静力触探(CPTU)原位测试技术在土体液化势评价方面具有独特的优势。采用严格的数学方法推导了基于CPTU测试技术的液化概率评价模型。新的概率模型以映射函数的形式表示,该映射函数将液化概率PL与基于CPTU的确定性模型中得到的安全系数Fs相关联,其中CPTU确定性模型是通过核极限学习机算法和稳健搜索技术建立的。该新的概率性模型考虑了模型固有的不确定性和参数的不确定性,同时对该概率模型进行对比分析。结果表明:当安全系数FS为1时,液化发生的概率PL为15.2%。该新模型的明显优势在于它直接使用CPTU数据,更符合液化行为现象,同时适用于砂质土和粉质土。该新模型无需钻孔取样室内试验,即可进行完整的液化评估或初步筛选。最后用中国唐山地震液化案例说明所提新概率模型考虑模型和参数不确定性的应用。
    Abstract: The liquefaction of cohesionless soils is closely related to the pore water pressure. The in situ testing technology, piezocone penetration test (CPTU) which can directly measure the pore water pressure, has unique advantages in liquefaction evaluation. In this study, a CPTU-based model for assessing the probability of liquefaction is derived by a rigorous mathematical method. The new probabilistic model is expressed in the form of a mapping function that relates the liquefaction probability mathematically to the factor of safety obtained from the CPTU-based deterministic model, which is established by the kernel extreme learning machine algorithm and the robust search technology. The new probabilistic model considers the inherent model uncertainty and parameter uncertainty, and makes a comparative analysis of the probabilistic model. The results show that the factor of safety (FS) of 1 yields a probability of liquefaction (PL) of 15.2%. The obvious advantage of the new model is that it directly uses the CPTU data, which is more suitable for the phenomenon of liquefaction behavior, and is suitable for sandy soil and silty soil. The new model can be used for liquefaction evaluation or preliminary screening without the need of additional sampling and laboratory testing. Finally, a liquefaction case of Tangshan earthquake in China is used to illustrate the application of the proposed probabilistic model considering the uncertainties of model and parameters.
  • 图  1   稳健搜索技术示意图

    Figure  1.   Schematic diagram of robust search technology

    图  2   PLFs关系图

    Figure  2.   Relationship between PL and Fs

    图  3   概率模型对比

    Figure  3.   Comparison of probabilistic models

    图  4   场地T1的CPTU剖面

    Figure  4.   CPTU sounding profiles at location T1 in site

    图  5   场地T1的液化结果分析

    Figure  5.   Analysis of liquefaction results of T1 in site

    图  6   CSR7.5和CRR7.5变异系数与液化概率标准差的关系

    Figure  6.   Relationship between coefficient of variation of CSR and CRR and standard deviation of liquefaction probability

    表  1   不同模型液化判别训练集结果对比

    Table  1   Comparison among different machine learning models

    模型 训练集 测试集
    O/% p/% r/% Fβ=1 O/% p/% r/% Fβ=1
    KELM 97.1 97.2 98.9 0.980 89.1 91.7 94.3 0.930
    RF 86.8 90.4 85.7 0.880 87.0 86.7 92.9 0.893
    SVM 96.1 95.6 99.4 0.975 85.5 86.9 91.2 0.890
    LM-BP 89.4 88.5 96.1 0.922 83.6 86.5 90.9 0.886
    下载: 导出CSV

    表  2   混淆矩阵

    Table  2   Confusion matrix

    模型预测 实际
    液化 非液化
    液化 TP FP
    非液化 FN TN
    下载: 导出CSV

    表  3   模型评价结果汇总

    Table  3   Summary of evaluation results by models

    Z分布 δ模型 d BIC
    正态分布 M1 2 162.65
    M2 3 165.33
    对数正态分布 M1 2 164.92
    M2 3 166.58
    极值分布 M1 2 166.44
    M2 3 167.98
    下载: 导出CSV

    表  4   所提液化概率模型性能的统计测试

    Table  4   Statistical measurement of performance of proposed probabilistic model for liquefaction

    分类 A p r F
    砂性土(Ic, BJ < 2.58) 0.78 0.76 0.90 0.83
    砂性土和粉质土 0.80 0.80 0.92 0.85
    下载: 导出CSV

    表  5   液化概率分类[18]

    Table  5   Classification of probability of liquefaction

    PL范围 对应Fs 等级 描述
    0.85≤PL Fs≤0.17 5 几乎可以肯定它会液化
    0.65≤PL < 0.85 0.17 < Fs≤0.43 4 很可能液化
    0.35≤PL < 0.65 0.43 < Fs≤0.74 3 液化和非液化的可能相等
    0.15≤PL < 0.35 0.74 < Fs≤1.00 2 液化可能性不大
    0.00≤PL < 0.15 Fs > 1.00 1 几乎可以肯定它不会液化
    下载: 导出CSV

    表  6   部分确定性误判案例的概率分析结果

    Table  6   Probabilistic evaluation results of some cases misclassified by deterministic model

    地震 测点 是否液化 qt1N Ic, BJ Fs PL 等级
    Hyogoken-Nanbu Taito Kobe Factory 液化 37.5 1.57 0.300 0.761 4
    Chi-Chi NT-C2 非液化 134.1 1.66 0.734 0.356 3
    Chi-Chi YL-C1 非液化 69.8 2.22 0.913 0.209 2
    Loma Prieta McGowan 136 非液化 55.1 1.88 0.900 0.218 2
    下载: 导出CSV

    表  7   输入参数的变化引起液化概率的变化

    Table  7   Change of liquefaction probability with change of input parameters

    CSR7.5变异系数 CRR7.5变异系数 P+L PL
    0 0.02 0.774 0.719
    0.05 0.02 0.791 0.690
    0.10 0.02 0.804 0.653
    0.15 0.02 0.816 0.605
    0 0.04 0.799 0.689
    0.05 0.04 0.813 0.655
    0.10 0.04 0.824 0.613
    0.15 0.04 0.833 0.559
    0 0.06 0.823 0.658
    0.05 0.06 0.834 0.620
    0.10 0.06 0.843 0.573
    0.15 0.06 0.850 0.513
    0 0.08 0.844 0.625
    0.05 0.08 0.853 0.583
    0.10 0.08 0.860 0.531
    0.15 0.08 0.865 0.466
    下载: 导出CSV
  • [1]

    SEED H B, IDRISS I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(9): 1249-1273. doi: 10.1061/JSFEAQ.0001662

    [2]

    YOUD T L, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 297-313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)

    [3] 袁晓铭, 曹振中. 基于土层常规参数的液化发生概率计算公式及其可靠性研究[J]. 土木工程学报, 2014, 47(4): 99-108 doi: 10.15951/j.tmgcxb.2014.04.002

    YUAN Xiaoming, CAO Zhenzhong. Conventional soils parameters-based liquefaction probabilistic evaluation formula and its reliability analysis[J]. China Civil Engineering Journal, 2014, 47(4): 99-108. (in Chinese) doi: 10.15951/j.tmgcxb.2014.04.002

    [4] 蔡国军, 刘松玉, 童立元, 等. 基于静力触探测试的国内外砂土液化判别方法[J]. 岩石力学与工程学报, 2008, 27(5): 1019-1027 doi: 10.3321/j.issn:1000-6915.2008.05.018

    CAI Guojun, LIU Songyu, TONG Liyuan, et al. Evaluation of liquefaction of sandy soils based on cone penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1019-1027. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.05.018

    [5]

    ROBERTSON P K, WRIDE C F. Evaluating cyclic liquefaction potential using the cone penetration test[J]. Canadian Geotechnical Journal, 1998, 35(3): 442-459. doi: 10.1139/t98-017

    [6]

    BOULANGER R W, IDRISS I M. CPT-based liquefaction triggering procedure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(2): 4015065. doi: 10.1061/(ASCE)GT.1943-5606.0001388

    [7]

    BRAY J D, SANCIO R B. Assessment of the liquefaction susceptibility of fine-grained soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(9): 1165-1177. doi: 10.1061/(ASCE)1090-0241(2006)132:9(1165)

    [8]

    DUAN W, CONGRESS S S C, CAI G J, et al. Empirical correlations of soil parameters based on piezocone penetration tests (CPTU) for Hong Kong-Zhuhai-Macau Bridge (HZMB) Project [J]. Transportation Geotechnics, 2021, 30: 100605. doi: 10.1016/j.trgeo.2021.100605

    [9]

    KU C S, JUANG C H, CHANG C W, et al. Probabilistic version of the Robertson and Wride method for liquefaction evaluation: development and application[J]. Canadian Geotechnical Journal, 2012, 49(1): 27-44. doi: 10.1139/t11-085

    [10]

    LIAO S S C, VENEZIANO D, WHITMAN R V. Regression models for evaluating liquefaction probability[J]. Journal of Geotechnical Engineering, 1988, 114(4): 389-411. doi: 10.1061/(ASCE)0733-9410(1988)114:4(389)

    [11]

    MOSS R E, SEED R B, KAYEN R E, et al. CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(8): 1032-1051. doi: 10.1061/(ASCE)1090-0241(2006)132:8(1032)

    [12] 陈国兴, 李方明. 基于径向基函数神经网络模型的砂土液化概率判别方法[J]. 岩土工程学报, 2006, 28(3): 301-305 doi: 10.3321/j.issn:1000-4548.2006.03.004

    CHEN Guoxing, LI Fangming. Probabilistic estimation of sand liquefaction based on neural network model of radial basis function[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 301-305. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.03.004

    [13]

    JUANG C H, CHING J, KU C S, et al. Unified CPTu-based probabilistic model for assessing probability of liquefaction of sand and clay[J]. Géotechnique, 2012, 62(10): 877-892. doi: 10.1680/geot.9.P.025

    [14]

    JUANG C H, CHEN C H, MAYNE P W. CPTU simplified stress-based model for evaluating soil liquefaction potential[J]. Soils and Foundations, 2008, 48(6): 755-770. doi: 10.3208/sandf.48.755

    [15]

    HUANG G B. An insight into extreme learning machines: random neurons, random features and kernels[J]. Cognitive Computation, 2014, 6(3): 376-390. doi: 10.1007/s12559-014-9255-2

    [16]

    CETIN K O, SEED R B, DER KIUREGHIAN A, et al. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(12): 1314-1340. doi: 10.1061/(ASCE)1090-0241(2004)130:12(1314)

    [17]

    ZHAO Z N, DUAN W, CAI G J. A novel PSO-KELM based soil liquefaction potential evaluation system using CPT and Vs measurements[J]. Soil Dynamics and Earthquake Engineering, 2021, 150: 106930. doi: 10.1016/j.soildyn.2021.106930

    [18]

    CHEN C J, JUANG C H. Calibration of SPT- and CPT-based liquefaction evaluation methods[C]//Geo-Denver 2000. Denver: American Society of Civil Engineers, 2000: 49-64.

    [19]

    CHEN G X, KONG M Y, KHOSHNEVISAN S, et al. Calibration of Vs-based empirical models for assessing soil liquefaction potential using expanded database[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2): 945-957. doi: 10.1007/s10064-017-1146-9

    [20]

    CAI G J, LIU S Y, PUPPALA A J. Liquefaction assessments using seismic piezocone penetration (SCPTU) test investigations in Tangshan region in China[J]. Soil Dynamics and Earthquake Engineering, 2012, 41: 141-150. doi: 10.1016/j.soildyn.2012.05.008

  • 其他相关附件

图(6)  /  表(7)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-09
  • 网络出版日期:  2023-02-03
  • 发布日期:  2021-06-09
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回