Processing math: 100%

    考虑砂土初始各向异性的单剪试验模拟分析

    吴则祥, 陈佳莹, 尹振宇

    吴则祥, 陈佳莹, 尹振宇. 考虑砂土初始各向异性的单剪试验模拟分析[J]. 岩土工程学报, 2021, 43(6): 1157-1165. DOI: 10.11779/CJGE202106020
    引用本文: 吴则祥, 陈佳莹, 尹振宇. 考虑砂土初始各向异性的单剪试验模拟分析[J]. 岩土工程学报, 2021, 43(6): 1157-1165. DOI: 10.11779/CJGE202106020
    WU Ze-xiang, CHEN Jia-ying, YIN Zhen-yu. Finite element simulation of simple shear tests considering inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1157-1165. DOI: 10.11779/CJGE202106020
    Citation: WU Ze-xiang, CHEN Jia-ying, YIN Zhen-yu. Finite element simulation of simple shear tests considering inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1157-1165. DOI: 10.11779/CJGE202106020

    考虑砂土初始各向异性的单剪试验模拟分析  English Version

    基金项目: 

    港研究资助局基金项目 R5037-18F

    详细信息
      作者简介:

      吴则祥(1987—),男,讲师,博士,主要从事岩土试验及数值等方面的教学和科研工作。E-mail: zexiang.wu@wzu.edu.cn

      通讯作者:

      尹振宇, E-mail: zhenyu.yin@polyu.edu.hk

    • 中图分类号: TU43

    Finite element simulation of simple shear tests considering inherent anisotropy

    • 摘要: 在单剪条件下,由于侧边界上不存在互补的剪切应力会导致应力不均匀,使得室内单剪试验研究变得复杂。提出一个考虑砂土初始各向异性的单剪试验数值分析方法。主要是通过引入初始各向异性修正的临界状态本构模型,并将模型编入有限元大变形计算平台。利用三维有限元分析实际的GDS型单剪试验条件,以分析在剪切过程中试样的不均匀特征。此项研究可以提高对单剪试验过程中边界效应的理解和认识,并且提供一种分析试样的不均匀性的计算方法。
      Abstract: The absence of complementary shear stress on the side boundary of a specimen in the simple shear tests will cause stress inhomogeneity. An enhanced critical state-based constitutive model is proposed by incorporating the inherent anisotropy fabric, and also implemented into the finite element code for the numerical simulation. In addition, a three-dimensional finite element analysis with the same size as the GDS-type simple shear apparatus is performed to illustrate the inhomogeneous features of the specimen. Above all, this study can improve the understanding and knowledge of boundary effects for the simple shear tests, and provide a calculation method for analyzing the inhomogeneous ness of the specimen.
    • 图  1   ABAQUS/Explicit分析的基本流程

      Figure  1.   Flow chart of explicit finite element analysis based on ABAQUS/Explicit

      图  2   切面法塑性修正迭代计算

      Figure  2.   Schematic diagram of a general cutting plane algorithm

      图  3   GDS单剪试验

      Figure  3.   Simple shear tests

      图  4   单剪试验的三维有限元建模

      Figure  4.   Three-dimensional FEM model for simple shear tests

      图  5   用于参数标定的枫丹白露砂三轴试验

      Figure  5.   Simulated results of triaxial tests using determined parameters for Fontainebleau NE34 sand

      图  6   用于参数标定的枫丹白露砂单剪试验

      Figure  6.   Calibration of anisotropic parameters

      图  7   三维单剪试验模拟结果

      Figure  7.   Simulated results by three-dimensional simple shear tests

      图  8   垂直有效应力不均匀分布

      Figure  8.   Nonuniform distribution of vertical effective stress

      图  9   恒法向应力试验的垂直应力的正态分布(S-3:σn=416 kPa)

      Figure  9.   Normal distribution of vertical stress under constant normal stress tests

      图  10   恒体积试验的垂直应力的正态分布(S-5:σn=416 kPa)

      Figure  10.   Normal distribution of vertical stress under constant volum tests

      图  11   恒定法向应力为416 kPa试验的连续单剪过程

      Figure  11.   Profiles of successive simple shearing process under constant normal stress at σn= 416 kPa

      图  12   法向应力为416 kPa的恒定体积试验的连续单剪过程

      Figure  12.   Profiles of successive simple shearing process under constant volume at σn = 416 kPa

      图  13   基于恒定法向应力试验过程中的概率分布(S-3:σn=416 kPa)

      Figure  13.   Probability distribution with increase of shear strain based on constant normal stress

      图  14   恒定体积试验过程中的概率分布(S-5:σn=416 kPa)

      Figure  14.   Probability distribution based on constant volume

      表  1   SIMSAND模型的基本本构方程

      Table  1   Basic constitutive equations of SIMSAND

      组成部分本构方程
      弹性准则˙εeij=1+υ3K(12υ)σijυ3K(12υ)σkkδij K=K0pat(2.97e)2(1+e)(ppat)n 
      屈服面f=qpH 
      塑性势面gp=Ad(Mptqp), gq=1 
      硬化参数H=Mpεpdkp+εpd 
      临界状态参数ec=erefλ(ppat)ξ tanϕp=(ece)nptanϕμ   tanϕpt=(ece)ndtanϕμ 
      三维强度标准Mp=6sinϕp3sinϕp[2c411+c41+(1c41)sin3θ]14, c1=3sinϕp3+sinϕpMpt=6sinϕpt3sinϕpt[2c421+c24+(1c42)sin3θ]14 , c2=3sinϕpt3+sinϕpt 
      下载: 导出CSV

      表  2   枫丹白露砂单调加载的单剪试验列表

      Table  2   Summary of monotonic simple shear tests on fontainebleau sand

      编号加载方式e0(初始)e′(K0固结后)σn0 /kPa
      S-1法向应力恒定0.700.691104
      S-2法向应力恒定0.700.688208
      S-3法向应力恒定0.700.678416
      S-4法向高度恒定0.680.666208
      S-5法向高度恒定0.680.654416
      下载: 导出CSV
    • [1]

      DABEET A, Discrete Element Modeling of Direct Simple Shear Response of Granular Soils and Model Validation Using Laboratory Tests[D]. Vancouver: University of British Columbia, 2014.

      [2]

      WIJEWICKREME D, SRISKANDAKUMAR S, BYRNE P. Cyclic loading response of loose air-pluviated Fraser River sand for validation of numerical models simulating centrifuge tests[J]. Canadian Geotechnical Journal, 2005, 42(2): 550-561. doi: 10.1139/t04-119

      [3]

      BUDHU M. Nonuniformities imposed by simple shear apparatus[J]. Canadian Geotechnical Journal, 1984, 21(1): 125-137. doi: 10.1139/t84-010

      [4]

      WANG B, POPESCU R, PREVOST J H. Effects of boundary conditions and partial drainage on cyclic simple shear test results—a numerical study[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(10): 1057-1082. doi: 10.1002/nag.377

      [5]

      GROGNET M. The Boundary Conditions in Direct Simple Shear Tests: Developments for Peat Testing at Low Normal Stress[M]. Delft: Delft University of Technology, 2011.

      [6]

      DOHERTY J, FAHEY M. Three-dimensional finite element analysis of the direct simple shear test[J]. Computers and Geotechnics, 2011, 38(7): 917-924. doi: 10.1016/j.compgeo.2011.05.005

      [7] 程马遥, 金银富, 尹振宇, 等. 改进DE-TMCMC法及其在高级模型参数识别上的应用[J]. 岩土工程学报, 2019, 41(12): 2281-2289. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912020.htm

      CHENG Ma-yao, JIN Yin-fu, YIN Zhen-yu, et al. Improved DE-TMCMC method and its application in high-level model parameter identification[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2281-2289. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912020.htm

      [8] 吴则祥, 金银富, 季慧, 等. 易破碎砂土地基中“平底桩”贯入数值模拟分析[J]. 岩土力学, 2017, 38(增刊2): 330-336. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2050.htm

      WU Ze-xiang, JIN Yin-fu, JI Hui, et al. Numerical simulation analysis of "flat-bottomed pile" penetration in easily broken sand foundation[J]. Rock and Soil Mechanics, 2017, 38(S2): 330-336. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2050.htm

      [9]

      JIN Y F, WU Z X, YIN Z Y, et al. Estimation of critical state-related formula in advanced constitutive modeling of granular material[J]. Acta Geotechnica, 2017: 1-23.

      [10]

      WU Z X, YIN Z Y, JIN Y F, et al. A straightforward procedure of parameters determination for sand: a bridge from critical state based constitutive modelling to finite element analysis[J]. European Journal of Environmental and Civil Engineering, 2017: 1-23.

      [11]

      YIN Z Y, JIN Z, KOTRONIS P, et al. Novel SPH SIMSAND-based approach for modeling of granular collapse[J]. International Journal of Geomechanics, 2018, 18(11).

      [12]

      YAO Y P, KONG Y X. Extended UH model: Three- dimensional unified hardening model for anisotropic clays[J]. Journal of Engineering Mechanics, 2011, 138(7): 853-866.

      [13]

      GAO Z, ZHAO J. A non-coaxial critical-state model for sandaccounting for fabric anisotropy and fabric evolution[J]. International Journal of Solids and Structures, 2017, 106: 200-212.

      [14]

      GAO Z, ZHAO J. Efficient approach to characterize strength anisotropy in soils[J]. Journal of Engineering Mechanics, 2012, 138(12): 1447-1456. doi: 10.1061/(ASCE)EM.1943-7889.0000451

      [15]

      ODA M, NAKAYAMA H. Yield function for soil with anisotropic fabric[J]. Journal of Engineering Mechanics, 1989, 115(1): 89-104. doi: 10.1061/(ASCE)0733-9399(1989)115:1(89)

      [16]

      WANG C C. A new representation theorem for isotropic functions: an answer to Professor GF Smith's criticism of my papers on representations for isotropic functions[J]. Archive for Rational Mechanics and Analysis, 1970, 36(3): 166-197. doi: 10.1007/BF00272241

      [17]

      LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868-880. doi: 10.1061/(ASCE)1090-0241(2002)128:10(868)

      [18]

      PIETRUSZCZAK S, MROZ Z. Formulation of anisotropic failure criteria incorporating a microstructure tensor[J]. Computers and Geotechnics, 2000, 26(2): 105-112. doi: 10.1016/S0266-352X(99)00034-8

      [19]

      PIETRUSZCZAK S, MROZ Z. On failure criteria for anisotropic cohesive‐frictional materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(5): 509-524. doi: 10.1002/nag.141

      [20]

      VAID Y, SIVATHAYALAN S. Static and cyclic liquefaction potential of Fraser Delta sand in simple shear and triaxial tests[J]. Canadian Geotechnical Journal, 1996, 33(2): 281-289. doi: 10.1139/t96-007

      [21]

      YANG Y, YU H. A non‐coaxial critical state soil model and its application to simple shear simulations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(13): 1369-1390. doi: 10.1002/nag.531

      [22]

      YANG Y, YU H. Numerical simulations of simple shear with non-coaxial soil models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(1): 1-19. doi: 10.1002/nag.468

      [23]

      YANG Y, YU H-S. Numerical aspects of non-coaxial model implementations[J]. Computers and Geotechnics, 2010, 37(1): 93-102.

      [24]

      Hibbitt, Karlsson, Sorensen. ABAQUS/Explicit: User's Manual[R]. Vol. 1. Providence: Dassault Systemes Simulia Corp, 2001.

      [25] 李舰, 蔡国庆, 尹振宇. 适用于弹黏塑性本构模型的修正切面算法[J]. 岩土工程学报, 2020, 42(2): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002008.htm

      LI Jian, CAI Guo-qing, YIN Zhen-yu. Modified section algorithm for elasto-viscoplastic constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 253-259. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002008.htm

      [26] 杨杰, 尹振宇, 黄宏伟, 等. 面向边界面模型的切面算法扩展[J]. 岩土力学, 2017, 38(12): 3436-3444. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712006.htm

      YANG Jie, YIN Zhen-yu, HUANG Hong-wei, et al. Extension of tangent surface algorithm for boundary surface model[J]. Rock and Soil Mechanics, 2017, 38(12): 3436-3444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712006.htm

      [27]

      ANDRIA-NTOANINA I, CANOU J, DUPLA J. Caractérisation mécanique du sable de Fontainebleau NE34 à l’appareil triaxial sous cisaillement monotone[J]. Laboratoire Navier-Géotechnique. CERMES, ENPC/LCPC, 2010.

      [28]

      GAUDIN C, SCHNAID F, GARNIER J. Sand characterization by combined centrifuge and laboratory tests[J]. International Journal of Physical Modelling in Geotechnics, 2005, 5(1): 42-56. doi: 10.1680/ijpmg.2005.050104

      [29]

      JIN Y F, YIN Z Y, SHEN S L, et al. Selection of sand models and identification of parameters using an enhanced genetic algorithm[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(8): 1219-1240.

      [30]

      JIN Y F, YIN Z Y, SHEN S L, et al. Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis[J]. Acta Geotechnica, 2016, 11(5): 1131-1145.

      [31]

      JIN Y F, YIN Z Y, SHEN S L, et al. A new hybrid real-coded genetic algorithm and its application to parameters identification of soils[J]. Inverse Problems in Science and Engineering, 2016: 1-24.

      [32]

      BUDHU M. Failure state of a sand in simple shear[J]. Canadian Geotechnical Journal, 1988, 25(2): 395-400.

    图(14)  /  表(2)
    计量
    • 文章访问数: 
    • HTML全文浏览量:  0
    • PDF下载量: 
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-09-03
    • 网络出版日期:  2022-12-02
    • 刊出日期:  2021-05-31

    目录

      /

      返回文章
      返回