Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于空间面变化的各向异性强度变化规律研究

许萍, 孙志军, 邵生俊

许萍, 孙志军, 邵生俊. 基于空间面变化的各向异性强度变化规律研究[J]. 岩土工程学报, 2021, 43(6): 1118-1124. DOI: 10.11779/CJGE202106015
引用本文: 许萍, 孙志军, 邵生俊. 基于空间面变化的各向异性强度变化规律研究[J]. 岩土工程学报, 2021, 43(6): 1118-1124. DOI: 10.11779/CJGE202106015
XU Ping, SUN Zhi-jun, SHAO Sheng-jun. Strength characteristics based on variation of spatial mobilization plane for anisotropic geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1118-1124. DOI: 10.11779/CJGE202106015
Citation: XU Ping, SUN Zhi-jun, SHAO Sheng-jun. Strength characteristics based on variation of spatial mobilization plane for anisotropic geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1118-1124. DOI: 10.11779/CJGE202106015

基于空间面变化的各向异性强度变化规律研究  English Version

基金项目: 

国家自然科学基金青年基金项目 51808445

陕西省自然科学基础研究计划资助项目 2018JQ5006

陕西省教育厅重点实验室科研计划项目 17JS092

西安理工大学校博士科研启动金项目 2560816023

详细信息
    作者简介:

    许萍(1986—),女,陕西西安人,讲师,主要从事岩土材料测试及土石坝灾害防治。E-mail: xuping1986@xaut.edu.cn

  • 中图分类号: TU43

Strength characteristics based on variation of spatial mobilization plane for anisotropic geomaterials

  • 摘要: 基于SMP准则,研究了八面体面6个主应力空间域与空间滑动面、应力状态3者之间的关系,考虑土材料的空间滑动面会随着主应力的夹角变化,提出一般应力条件下的各向异性材料的强度变化规律表达式。对真三轴条件下各向异性黄土强度特性的模拟结果表明,建立的基于空间面变化的各向异性强度变化表达能够较好地反映黄土材料在一般应力条件下的强度变化规律,尤其是材料空间滑动面方向与应力主轴成任意角度时的强度变化具有较好的适用性。
    Abstract: Based on the criterion of spatial mobilization plane (SMP), the relationship among the six principal stress spatial domains of the octahedral surface, the SMP and stress state is studied. Considering that the SMP of the soil material changes with the angle of the principal stress, a mathematical expression is proposed to reflect the strength characteristics of anisotropic materials under general stress conditions. The simulated results of the strength characteristics of anisotropic loess under true triaxial conditions show that the established expression for the variation of anisotropic strength variation based on variation of spatial plane can better reflect the strength variation law of loess materials under general stress conditions, especially the strength variation when the direction of the SMP of materials is at an arbitrary angle to the principal axis of stress.
  • 图  1   San Francisco海湾黏土试验结果

    Figure  1.   Results of tests on San Francisco Bay clay

    图  2   Santa Monica Beach砂真三轴试验结果

    Figure  2.   Results of true triaxial tests on Santa Monica Beach sand

    图  3   主应力状态与八面体应力空间域的关系

    Figure  3.   Relationship between state of principal stress and spatial domain of octahedral stress

    图  4   应力空间示意图

    Figure  4.   Diagram of space of principal stress

    图  5   不同方向作用大主应力条件下各向异性参量Φi随径向偏角θ变化

    Figure  5.   Variation of anisotropic parameters Φi with radial declination θ under large principal stress acting in different directions

    图  6   空间滑动面

    Figure  6.   Spatial mobilization planes

    图  7   取土环境及实验室制备原状三轴试样

    Figure  7.   Site of circumstance and undisturbed samples in laboratory

    图  8   各向异性黄土试验结果与破坏准则比较

    Figure  8.   Comparison of test results and failure criteria for anisotropic loess

  • [1] 路德春, 梁靖宇, 王国盛, 等. 横观各向同性土的三维强度准则[J]. 岩土工程学报, 2018, 40(1): 54-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801005.htm

    LU De-chun, LIANG Jing-yu, WANG Guo-sheng, et al. Three-dimensional strength criterion for transversely isotropic soil[J]. Journal of Geotechnical Engineering, 2018, 40(1): 54-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801005.htm

    [2] 张坤勇. 考虑应力各向异性土体本构模型及其应用研究[D]. 南京: 河海大学, 2004.

    ZHANG Kun-yong. Study and Application on Soil’s Constitutive Model with the Consideration of Stress-induced Anisotropy[D]. Nanjing: Hohai University, 2004. (in Chinese)

    [3]

    DAFALIAS Y F, PAPADIMITRIOU A G, LI X S. Sand plasticity model accounting for inherent fabric anisotropy[J]. Journal of Engineering Mechanicsm, 2004, 130(11): 1319-1333.

    [4] 万征, 宋琛琛, 赵晓光.一种横观各向同性强度及变换应力空间[J]. 力学学报, 2018, 50(5): 1168-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201805018.htm

    WAN Zheng, SONG Chen-chen, ZHAO Xiao-guang. A transversely isotropic strength and transformation stress space[J]. Journal of Mechanics, 2018, 50(5): 1168-1184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201805018.htm

    [5] 姚仰平, 孔玉侠. 横观各向异性土强度与破坏准则的研究[J]. 水利学报, 2012, 43(1): 1107-1111.

    YAO Yang-ping, KONG Yu-xia. Study on strength failure criterion of cross-anisotropic soil[J]. Journal of Hydraulic Engineering, 2012, 43(1): 1107-1111. (in Chinese)

    [6]

    GAO Z W, ZHAO J D, YAO Y P. A generalized anisotropic failure criterion for geomaterials[J]. International Journal of Solids and Structures, 2010, 47(22/23): 3166-3185.

    [7] 李学丰, 黄茂松, 钱建国. 宏细观结合的砂土各向异性破坏准则[J]. 岩石力学与工程学报, 2010, 29(9): 1885-1891. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009019.htm

    LI Xue-feng, HUANG Mao-song, QIAN Jian-guo. Failure criterion of anisotropic sand with method of macro-meso incorporation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1885-1891. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009019.htm

    [8]

    CASAGRANDE A, CARILLO N. Shear failure of anisotropic materials[J]. Boston Soc Civ Eng, 1944, 31(4): 74-87.

    [9]

    LO K Y. Stability in anisotropic soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1965, 91(S4): 85-104.

    [10]

    KIRKGARD M, LADE P V. Anisotropy of normally consolidated San Francisco Bay Mud[J]. Geotech Test J, 1991, 14(3): 231-246. doi: 10.1520/GTJ10568J

    [11]

    LADE P V. Failure criterion for cross-anisotropic soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2008, 134(1): 117-124.

    [12]

    ABELEV A V, LADE P V. Characterization of failure in cross-anisotropic soils[J]. Journal of Engineering Mechanics, ASCE, 2004, 130(5): 599-606.

    [13] 张连卫, 张建民, 张嘎. 基于SMP 的粒状材料各向异性强度准则[J]. 岩土工程学报, 2008, 30(8): 1107-1111. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200808003.htm

    ZHANG Lian-wei, ZHANG Jian-min, ZHANG Ga. SMP-based anisotropic strength criteria of granular materials[J]. Chinese Journal of Geotechnical Engineering. 2008, 30(8): 1107-1111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200808003.htm

    [14]

    MORTARA G. A hierarchical single yield surface for frictional materials[J]. Computers and Geotechnics, 2009, 36(6): 960-967.

    [15]

    MASUOKA H, NAKAI T. Stress-deformation and strength characteristics of soil under three different principal stresses[C]//Proceedings of the Japan Society of Civil Engineering, 1974.

    [16] 陈昌禄, 邵生俊, 罗爱忠, 等. 土的静态空间滑动面及其强度准则适应性研究[J]. 地下空间与工程学报, 2015, 11(5): 1185-1192. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201505015.htm

    CHEN Chang-lu, SHAO Sheng-jun, LUO Ai-zhong, et al. Study on static space sliding surface of soil and adaptability of its strength criterion[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(5): 1185-1192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201505015.htm

图(8)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  62
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-14
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-05-31

目录

    /

    返回文章
    返回