• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于SED准则的近场动力学及岩石类材料裂纹扩展模拟

马鹏飞, 李树忱, 袁超, 周慧颖, 王曼灵, 王修伟

马鹏飞, 李树忱, 袁超, 周慧颖, 王曼灵, 王修伟. 基于SED准则的近场动力学及岩石类材料裂纹扩展模拟[J]. 岩土工程学报, 2021, 43(6): 1109-1117. DOI: 10.11779/CJGE202106014
引用本文: 马鹏飞, 李树忱, 袁超, 周慧颖, 王曼灵, 王修伟. 基于SED准则的近场动力学及岩石类材料裂纹扩展模拟[J]. 岩土工程学报, 2021, 43(6): 1109-1117. DOI: 10.11779/CJGE202106014
MA Peng-fei, LI Shu-chen, YUAN Chao, ZHOU Hui-ying, WANG Man-ling, WANG Xiu-wei. Simulations of crack propagation in rock-like materials by peridynamics based on SED criterion[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1109-1117. DOI: 10.11779/CJGE202106014
Citation: MA Peng-fei, LI Shu-chen, YUAN Chao, ZHOU Hui-ying, WANG Man-ling, WANG Xiu-wei. Simulations of crack propagation in rock-like materials by peridynamics based on SED criterion[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1109-1117. DOI: 10.11779/CJGE202106014

基于SED准则的近场动力学及岩石类材料裂纹扩展模拟  English Version

基金项目: 

国家自然科学基金项目 51879150

国家自然科学基金项目 41831278

详细信息
    作者简介:

    马鹏飞(1994—),男,博士研究生,主要从事岩土力学与模拟等方面的研究。E-mail: mapengfeisdu@163.com

    通讯作者:

    李树忱, E-mail: shuchenli@sdu.edu.cn

  • 中图分类号: TU43

Simulations of crack propagation in rock-like materials by peridynamics based on SED criterion

  • 摘要: 在近场动力学理论的基础上,引入反应岩石类材料破坏特性的应变能密度(SED)准则,同时利用服从Weibull分布的临界破坏条件来描述岩石的异质性,弥补了近场动力学方法在模拟岩石类材料裂纹扩展时无法反应岩石应变软化特性及异质性的不足。利用基于SED准则的近场动力学方法模拟了含有不同倾角单裂纹岩石在单轴压缩条件下的裂纹扩展过程,分析了翼型裂纹、次生共面剪切裂纹及反翼型裂纹扩展的机理。利用提出的方法模拟了含双平行裂纹岩石在单轴压缩条件下的裂纹扩展过程,结果表明预制双平行裂纹岩石破坏可分为3个阶段:翼型裂纹第一次贯通;剪切裂纹第二次贯通形成闭合的破坏环;剪切裂纹形成宏观裂纹引发破坏。最后将本文模拟的结果与前人室内试验及数值模拟的结果对比,以验证方法的有效性,通过对比发现提出的理论可较好的模拟岩石类材料裂纹扩展的过程有着很好的应用前景。
    Abstract: Based on the peridynamic theory, the strain energy density (SED) criterion is introduced to reflect the failure characteristics of rock-like materials. At the same time, the critical failure condition obeying the Weibull distribution is used to describe the heterogeneity of rock, which makes up for the deficiency that the peridynamic method cannot reflect the strain-softening characteristics and heterogeneity of rock when simulating the crack propagation of rock materials. The peridynamic method based on the SED criterion is used to simulate the crack propagation process of rock with single crack with different dip angles under uniaxial compression. The propagation mechanisms of airfoil cracks, secondary coplanar shear cracks and anti-airfoil cracks are analyzed. The proposed method is used to simulate the crack propagation process of rock with double parallel cracks under uniaxial compression. The results show that the failure process of rock with double parallel cracks can be divided into three stages: the first penetration of airfoil cracks, the second penetration of shear cracks to form a closed failure ring, and the formation of macro-cracks leading to failure. Finally, the simulated results are compared with those of the previous laboratory tests and numerical simulations to verify the effectiveness of this method. Through comparison, it is found that the proposed theory can better simulate the process of crack propagation of rock materials and has a good application prospect.
  • 图  1   物质点相互作用

    Figure  1.   Interaction of material points

    图  2   岩石应变软化应力应变曲线

    Figure  2.   Strain-softening stress-strain curves of rock

    图  3   岩石破坏后的弹性模量折减

    Figure  3.   Reduction of elastic modulus after failure of rock

    图  4   应变能微观机制

    Figure  4.   Microscopic mechanism of strain energy

    图  5   概率密度图

    Figure  5.   Map of probability density

    图  6   预制单裂纹模型

    Figure  6.   Model for prefabricated single crack

    图  7   形状参数影响

    Figure  7.   Influences of shape parameter

    图  8   单裂隙裂纹扩展过程

    Figure  8.   Crack growth process of single crack

    图  9   单裂隙裂纹扩展机理

    Figure  9.   Mechanism of single crack growth

    图  10   不同倾角裂纹扩展结果对比

    Figure  10.   Comparison of crack growth results with different inclination angles

    图  11   预制双平行裂纹模型

    Figure  11.   Model for prefabricated double parallel cracks

    图  12   双裂隙裂纹扩展过程

    Figure  12.   Crack growth process of double cracks

    图  13   双平行裂纹扩展结果对比

    Figure  13.   Comparison of double-parallel crack growth results

  • [1]

    WONG R H C, CHAU K T, TANG C A, et al. Analysis of crack coalescence in rock-like materials containing three flaws—Part I: experimental approach[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(7): 909-924.

    [2]

    HAERI H, SHAHRIAR K, MARJT M F, et al. Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 67: 20-28.

    [3]

    CAO P, LIU T, PU C, et al. Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression[J]. Engineering Geology, 2015, 187: 113-121. doi: 10.1016/j.enggeo.2014.12.010

    [4] 赵延林, 万文, 王卫军, 等. 类岩石材料有序多裂纹体单轴压缩破断试验与翼形断裂数值模拟[J]. 岩土工程学报, 2013, 35(11): 2097-2109. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201311024.htm

    ZHAO Yan-ling, WAN Wen, WANG Wei-jun, et al. Fracture experiments on ordered multi-crack body in rock-like materials under uniaxial compression and numerical simulation of wing cracks[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2097-2109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201311024.htm

    [5]

    MOES N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 2015, 46(1): 131-150.

    [6]

    BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 2015, 45(5): 601-620.

    [7]

    JONATHAN B, LIONEL G, JÉRÉMIE R, et al. A joined finite element based method to simulate 3D crack network initiation and propagation in mechanical and thermal fatigue[J]. International Journal of Fatigue, 2012, 44: 279-291. doi: 10.1016/j.ijfatigue.2012.04.005

    [8]

    WAGNER G J, MOES N, LIU W K, et al. The extended finite element method for rigid particles in Stokes flow[J]. International Journal for Numerical Methods in Engineering, 2001, 51(3): 293-313. doi: 10.1002/nme.169

    [9]

    YUAN C, MOSCARIELLO M, CUOMO S, et al. Numerical simulation of wetting-induced collapse in partially saturated granular soils[J]. Granular Matter, 2019, 21(3): 64. doi: 10.1007/s10035-019-0921-7

    [10]

    DMITRIEV A I, PSAKHIE S G. Molecular-dynamics study of the initial stage of nanoscale deformation localization in the surface layers of a loaded solid[J]. Technical Physics Letters, 2004, 30(7): 578-579. doi: 10.1134/1.1783407

    [11]

    SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of Mechanics Physics of Solids, 2000, 48(1): 175-209. doi: 10.1016/S0022-5096(99)00029-0

    [12]

    SILLING S A, BOBARU F. Peridynamic modeling of membranes and fibers[J]. International Journal of Non-Linear Mechanics, 2005, 40(2): 395-409.

    [13] 黄丹, 章青, 乔丕忠, 等. 近场动力学方法及其应用[J]. 力学进展, 2010(4): 94-105. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201004007.htm

    HUANG Dan, ZHANG Qing, QIAO Pi-zhong, et al. A review on peridynamics method and its applications[J]. Advances in Mechanics, 2010(4): 94-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201004007.htm

    [14]

    HUANG D, LU G, WANG C, et al. An extended peridynamic approach for deformation and fracture analysis[J]. Engineering Fracture Mechanics, 2015, 141: 196-211. doi: 10.1016/j.engfracmech.2015.04.036

    [15]

    ZHOU X P, GU X B, WANG Y T. Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 80: 241-254.

    [16] 谷新保, 周小平. 裂纹扩展和连接过程的近场动力学数值模拟[J]. 岩土力学, 2017, 38(2): 610-616. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702039.htm

    GU Xing-bao, ZHOU Xiao-ping. Numerical simulation of propagation and coalescence of cracks using peridynamic theory[J]. Rock and Soil Mechanics, 2017, 38(2): 610-616. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702039.htm

    [17] 王超, 熊伟鹏, 叶礼裕, 等. 冰桨接触过程中的遮蔽效应分析[J]. 华中科技大学学报(自然科学版), 2018, 46(6): 105-110, 132. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201806019.htm

    WANG Chao, XIONG Wei-peng, YE Li-yu, et al. Analysis of shadowing effect during propeller-ice contact process[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(6): 105-110, 132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201806019.htm

    [18]

    ZHANG H, QIAO P. A state-based peridynamic model for quantitative elastic and fracture analysis of orthotropic materials[J]. Engineering Fracture Mechanics, 2018, 211: 217-235. doi: 10.1007/s10704-018-0285-8

    [19]

    CHENG Z, JIN D, YUAN C, et al. Dynamic fracture analysis of functionally gradient materials with two cracks by peridynamic modeling[J]. Computer Modeling in Engineering and Sciences, 2019, 121(2): 445-464. doi: 10.32604/cmes.2019.06374

    [20] 朱其志, 倪涛, 赵伦洋, 等. 岩石类材料裂纹扩展贯通的近场动力学方法模拟[J]. 岩石力学与工程学报, 2016, 35(增刊2): 3507-3515. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2008.htm

    ZHU Qi-zhi, NI Tao, ZHAO Lun-yang, et al. Simulations of crack propagation in rock-like materials using peridynamic method[J]. Chinese Journal of Rock Mechanics & Engineering, 2016, 35(S2): 3507-3515. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2008.htm

    [21]

    SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computers & Structures, 2005, 83(17): 1526-1535.

    [22]

    CARPINTERI , ALBERTO . Mechanical Damage and Crack Growth in Concrete: Plastic Collapse to Brittle Fracture[M]. Kluwer Academic, 1986.

    [23]

    SIH G C. Some basic problems in fracture mechanics and new concepts[J]. Engineering Fracture Mechanics, 1973, 5(2): 365-377.

    [24]

    YANG L, JIANG Y, BO L I, et al. Application of the expanded distinct element method for the study of crack growth in rock-like materials under uniaxial compression[J]. Frontiers of Structural and Civil Engineering, 2012, 6(2): 121-131.

    [25]

    LI Y P, WANG Y H, CHEN L Z. Experimental research on pre-cracked marble under compression[J]. International Journal of Solids and Structures, 2005, 42(9): 2505-2516.

  • 期刊类型引用(4)

    1. 史金权,王磊,张轩铭,赵航,吴秉阳,赵航行,刘汉龙,肖杨. 微生物加固钙质砂地基电阻率特性试验研究. 岩土工程学报. 2024(02): 244-253 . 本站查看
    2. 马乾玮,张洁雅,曹家玮,董晓强. 基于电阻率表征的固化镉污染土的力学特性. 太原理工大学学报. 2024(05): 823-831 . 百度学术
    3. 张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 . 百度学术
    4. 崔雪,田斌,卢晓春,熊勃勃,冯程鑫. 基于电阻率的滑坡土体含水率贝叶斯LSTM网络模型预测研究. 水电能源科学. 2022(03): 182-185 . 百度学术

    其他类型引用(15)

图(13)
计量
  • 文章访问数:  291
  • HTML全文浏览量:  47
  • PDF下载量:  197
  • 被引次数: 19
出版历程
  • 收稿日期:  2020-10-27
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-05-31

目录

    /

    返回文章
    返回