• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水下浅埋双孔平行隧道渗流场的解析研究

郭玉峰, 王华宁, 蒋明镜

郭玉峰, 王华宁, 蒋明镜. 水下浅埋双孔平行隧道渗流场的解析研究[J]. 岩土工程学报, 2021, 43(6): 1088-1096. DOI: 10.11779/CJGE202106012
引用本文: 郭玉峰, 王华宁, 蒋明镜. 水下浅埋双孔平行隧道渗流场的解析研究[J]. 岩土工程学报, 2021, 43(6): 1088-1096. DOI: 10.11779/CJGE202106012
GUO Yu-feng, WANG Hua-ning, JIANG Ming-jing. Analytical solutions of seepage field for underwater shallow-buried parallel twin tunnels[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1088-1096. DOI: 10.11779/CJGE202106012
Citation: GUO Yu-feng, WANG Hua-ning, JIANG Ming-jing. Analytical solutions of seepage field for underwater shallow-buried parallel twin tunnels[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1088-1096. DOI: 10.11779/CJGE202106012

水下浅埋双孔平行隧道渗流场的解析研究  English Version

基金项目: 

国家自然科学基金项目 11872281

同济大学土木工程防灾国家重点实验室自主课题 SLDRCE19-A-06

详细信息
    作者简介:

    王华宁(1975—),女,教授,博士生导师,主要从事地下工程中的解析理论与方法、数值方法的耦合分析、离散元在地下工程中的应用等方面的教学和科研。E-mail: wanghn@tongji.edu.cn

    通讯作者:

    王华宁, E-mail: wanghn@tongji.edu.cn

  • 中图分类号: TU462

Analytical solutions of seepage field for underwater shallow-buried parallel twin tunnels

  • 摘要: 目前对于双孔隧道渗流场的解析求解多基于单孔隧道渗流场的简单叠加,未真实满足洞周边界条件,所得结果存在误差。基于质量守恒定律和达西定律,采用保角变换法和Schwartz迭代法对水下双线平行隧道稳态渗流场进行了推导,经过2~3次迭代后获得了高精度的解答。采用Comsol软件对该问题进行数值模拟,并将数值模拟结果与本文解析解进行对比,发现在全域范围二者均吻合良好。与叠加法解答的对比显示,本解答与叠加法解答在远区一致;而隧道附近叠加法的误差较大。最后,讨论了隧道间距、埋深和相对大小对双孔平行隧道渗流场水头分布、渗流量的影响。
    Abstract: Most of the current analytical solutions of seepage field for twin tunnels are directly obtained by the superposition of seepage fields of two single tunnels, which does not really satisfy the conditions at the tunnel boundary and has the deviation from the actual seepage field. Based on the mass conservation law and the Darcy’s law, an analytical solution of seepage field for underwater twin parallel tunnels is derived by the Schwartz alternating method combined with the conformal mapping. After two to three iterations, an analytical solution of the problem with high accuracy is obtained. The numerical software Comsol is used to simulate the problem, and the simulated results are compared with the analytical solutions proposed in this study. It is found that they are in good agreement throughout the entirety of the ground. Compared with the direct superposition results, the two results are consistent in the region far from the tunnel, while there is a large error of the superposition results near the tunnel boundary. Finally, the influences of tunnel spacing, buried depth and relative size on the distribution of hydraulic head and the water inflow of the tunnel are discussed.
  • 图  1   双线平行隧道示意图

    Figure  1.   Schematic diagram of twin parallel tunnels

    图  2   迭代中的边界条件及附加水头

    Figure  2.   Boundary conditions and generated additional heads in alternating iterations

    图  3   保角映射

    Figure  3.   Conformal mapping

    图  4   迭代中的附加水头

    Figure  4.   Additional heads in each iterative step

    图  5   数值模拟结果

    Figure  5.   Numerical results

    图  6   总水头等值线图(解析解)

    Figure  6.   Contours of hydraulic head (analytical results)

    图  7   与有限元结果的对比

    Figure  7.   Comparison between analytical and FEM results

    图  8   本文解析解与镜像叠加法结果对比

    Figure  8.   Comparison between mirror image superposition and Schwartz alternating method

    图  9   隧道横剖面地层分布

    Figure  9.   Cross section of tunnel and distribution of strata

    图  10   隧道间距对渗流场的影响

    Figure  10.   Influence of tunnel spacing on seepage field

    图  11   两隧道中点处水头随隧道间距的变化

    Figure  11.   The hydraulic head at the midpoint of two tunnels versus tunnel spacing

    图  12   不同间距下隧道1渗流量沿洞周分布

    Figure  12.   Distribution of specific discharge around tunnel 1 under different tunnel spacings

    图  13   比流量最小值及出现位置随隧道间距的变化

    Figure  13.   The minimum value of specific discharge around tunnel 1 and the location where it occurs versus tunnel spacing

    图  14   隧道2不同埋深下隧道1渗流量沿洞周分布

    Figure  14.   Distribution of specific discharge around tunnel 1 under different buried depths of tunnel 2

    图  15   隧道1比流量最小值及出现位置随隧道2埋深的变化

    Figure  15.   The minimum specific discharge around tunnel 1 and its location versus buried depth of tunnel 2

    图  16   不同相对大小下隧道1渗流量沿洞周分布

    Figure  16.   Distribution of specific discharge around tunnel 1 under various relative tunnel sizes

    表  1   算例参数

    Table  1   Parameters of example

    隧道编号i半径ri/m埋深hi/m洞周水压pi/Pa隧道间距l/m地表水头H/m
    151502036
    25150
    下载: 导出CSV
  • [1] 蒋凌云, 张宏, 蒋美幸, 等. 花岗岩残积土隧道渗流效应数值模拟研究[J]. 湖南工业大学学报, 2019, 33(1): 23-30. doi: 10.3969/j.issn.1673-9833.2019.01.004

    JIANG Ling-yun, ZHANG Hong, JIANG Mei-xing. A numerical simulation study on seepage effect of granite residual soil tunnel[J]. Journal of Hunan University of Technology, 2019, 33(1): 23-30. (in Chinese) doi: 10.3969/j.issn.1673-9833.2019.01.004

    [2] 王众. 控制型防排水隧道渗流场数值分析[J]. 石家庄铁道大学学报(自然科学版), 2011, 24(1): 6-9. doi: 10.3969/j.issn.2095-0373.2011.01.002

    WANG Zhong. Seepage field analysis for tunnel excavation based on drainage control[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2011, 24(1): 6-9. (in Chinese) doi: 10.3969/j.issn.2095-0373.2011.01.002

    [3] 王建宇. 再谈隧道衬砌水压力[J]. 现代隧道技术, 2003, 40(3): 5-9. doi: 10.3969/j.issn.1009-6582.2003.03.002

    WANG Jian-yu. Once more on hydraulic pressure upon lining[J]. Modern Tunnelling Technology, 2003, 40(3): 5-9. (in Chinese) doi: 10.3969/j.issn.1009-6582.2003.03.002

    [4] 王秀英, 王梦恕, 张弥. 计算隧道排水量及衬砌外水压力的一种简化方法[J]. 北方交通大学学报, 2004, 28(1): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200401003.htm

    WANG Xiu-ying, WANG Meng-shu, ZHANG Mi. A simple method to calculate tunnel discharge and external water pressure on lining[J]. Journal of Northern Jiaotong University, 2004, 28(1): 8-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200401003.htm

    [5] 王秀英, 王梦恕, 张弥. 山岭隧道堵水限排衬砌外水压力研究[J]. 岩土工程学报, 2005, 27(1): 125-127. doi: 10.3321/j.issn:1000-4548.2005.01.022

    WANG Xiu-ying, WANG Meng-shu, ZHANG Mi. Research on regulating water pressure acting on mountain tunnels by blocking ground water and limiting discharge[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 125-127. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.01.022

    [6]

    HARR M E. Groundwater and seepage[J]. Soil Science, 1963, 95(4): 289.

    [7] 应宏伟, 朱成伟, 龚晓南. 考虑注浆圈作用水下隧道渗流场解析解[J]. 浙江大学学报(工学版), 2016, 50(6): 1018-1023. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201606002.htm

    YING Hong-wei, ZHU Cheng-wei, GONG Xiao-nan. Analytic solution on seepage field of underwater tunnel considering grouting circle[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(6): 1018-1023. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201606002.htm

    [8]

    PARK K H, OWATSIRIWONG A, LEE J G. Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer: a revisit[J]. Tunnelling and Underground Space Technology, 2007, 23(2).

    [9] 皇甫明, 谭忠盛, 王梦恕, 等. 暗挖海底隧道渗流量的解析解及其应用[J]. 中国工程科学, 2009, 11(7): 66-70. doi: 10.3969/j.issn.1009-1742.2009.07.011

    HUANG Fu-ming, TAN Zhong-sheng, WANG Meng-shu, et al. Analytical solutions for water inflow into an underwater tunnel and its application[J]. Journal of China Engineering Science, 2009, 11(7): 66-70. (in Chinese) doi: 10.3969/j.issn.1009-1742.2009.07.011

    [10] 吴金刚, 谭忠盛, 皇甫明. 高水压隧道渗流场分布的复变函数解析解[J]. 铁道工程学报, 2010, 9(1): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201009007.htm

    WU Jin-gang, TAN Zhong-sheng, HUANG Fu-ming. Analytic solution of complex function to distribution of seepage field of tunnel with high water pressure[J]. Journal of Railway Engineering Society, 2010, 9(1): 31-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201009007.htm

    [11] 潘以恒, 罗其奇, 周斌, 等. 半无限平面含注浆圈深埋隧道渗流场解析研究[J]. 浙江大学学报(工学版), 2018, 52(6): 1114-1122.

    PAN Yi-heng, LUO Qi-qi, ZHOU Bin, et al. Analytical study on seepage field of deep tunnel with grouting circle in half plane[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(6): 1114-1122. (in Chinese)

    [12] 朱成伟, 应宏伟, 龚晓南. 任意埋深水下隧道渗流场解析解[J]. 岩土工程学报, 2017, 39(11): 1984-1991. doi: 10.11779/CJGE201711005

    ZHU Cheng-wei, YING Hong-wei, GONG Xiao-nan. Analytical solutions for seepage fields of underwater tunnels with arbitrary burial depth[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 1984-1991. (in Chinese) doi: 10.11779/CJGE201711005

    [13]

    TANG Y, CHAN D H, ZHU D Z. Analytical solution for steady-state groundwater inflow into a circular tunnel in anisotropic soils[J]. Journal of Engineering Mechanics, 2018, 144(9): 8.

    [14]

    ZHANG Y, ZHANG D L, FANG Q, et al. Analytical solutions of non-Darcy seepage of grouted subsea tunnels[J]. Tunnelling and Underground Space Technology, 2020, 96: 10.

    [15]

    HANSBO S. Aspects of vertical drain design: darcian or non-Darcian flow[J]. Géotechnique, 1997, 47(5): 983-992.

    [16] 朱成伟, 应宏伟, 龚晓南, 等. 水下双线平行隧道渗流场解析研究[J]. 岩土工程学报, 2019, 41(2): 355-360. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902016.htm

    ZHU Cheng-wei, YING Hong-wei, GONG Xiao-nan, et al. Analytical solutions to seepage field of underwater twin parallel tunnels[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 355-360. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902016.htm

    [17]

    SU K, ZHOU Y, WU H, et al. An analytical method for groundwater inflow into a drained circular tunnel[J]. Groundwater, 2017, 55(5): 712-721.

    [18]

    WANG H N, WU L, JIANG M J, et al. Analytical stress and displacement due to twin tunneling in an elastic semi‐ infinite ground subjected to surcharge loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(6): 809-828.

    [19]

    ZHANG L Q, LU A Z, YUE Z Q, et al. An efficient and accurate iterative stress solution for an infinite elastic plate around two elliptic holes, subjected to uniform loads on the hole boundaries and at infinity[J]. European Journal of Mechanics-A/Solids, 2009, 28(1): 189-193.

    [20]

    WANG H N, ZENG G S, UTILI S, et al. Analytical solutions of stresses and displacements for deeply buried twin tunnels in viscoelastic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93: 13-29.

    [21]

    WANG H N, ZENG G S, JIANG M J. Analytical stress and displacement around non-circular tunnels in semi-infinite ground[J]. Applied Mathematical Modelling, 2018, 63: 303-328.

    [22] 张丙强. 半无限平面双孔平行隧道渗流场解析研究[J]. 铁道学报, 2017, 39(1): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201701018.htm

    ZHANG Bing-qiang. Analytical solution for seepage field of twin-parallel tunnels in semi-infinite plane[J]. Journal of the China Railway Society, 2017, 39(1): 125-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201701018.htm

    [23] 吴绍明, 孙瞻, 刘庭金, 等. 龙头山双洞八车道公路隧道地下水渗流初探[J]. 铁道建筑, 2007(12): 45-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200712016.htm

    WU Shao-ming, SUN Zhan, LIU Ting-jin, et al. Elementary discussion on leakage of underground water in Longtoushan mountain highway twin tunnels with 8 lanes[J]. Railway Engineering, 2007(12): 45-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200712016.htm

  • 期刊类型引用(1)

    1. 姬欧鸣,胡雪飞,刘长明,晏祥智. 循环荷载饱和风积土累积塑性变形模型. 土木工程与管理学报. 2021(02): 152-159 . 百度学术

    其他类型引用(4)

图(16)  /  表(1)
计量
  • 文章访问数:  264
  • HTML全文浏览量:  44
  • PDF下载量:  163
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-08-01
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-05-31

目录

    /

    返回文章
    返回