基于Bootstrap-SVR-ANN算法的TBM施工速度预测

    闫长斌, 汪鹤健, 周建军, 杨风威, 彭万军

    闫长斌, 汪鹤健, 周建军, 杨风威, 彭万军. 基于Bootstrap-SVR-ANN算法的TBM施工速度预测[J]. 岩土工程学报, 2021, 43(6): 1078-1087. DOI: 10.11779/CJGE202106011
    引用本文: 闫长斌, 汪鹤健, 周建军, 杨风威, 彭万军. 基于Bootstrap-SVR-ANN算法的TBM施工速度预测[J]. 岩土工程学报, 2021, 43(6): 1078-1087. DOI: 10.11779/CJGE202106011
    YAN Chang-bin, WANG He-jian, ZHOU Jian-jun, YANG Feng-wei, PENG Wan-jun. Prediction of TBM advance rate based on Bootstrap method and SVR-ANN algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1078-1087. DOI: 10.11779/CJGE202106011
    Citation: YAN Chang-bin, WANG He-jian, ZHOU Jian-jun, YANG Feng-wei, PENG Wan-jun. Prediction of TBM advance rate based on Bootstrap method and SVR-ANN algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1078-1087. DOI: 10.11779/CJGE202106011

    基于Bootstrap-SVR-ANN算法的TBM施工速度预测  English Version

    基金项目: 

    国家自然科学基金项目 41972270

    国家自然科学基金项目 U1504523

    河南省重点研发与推广专项 182102210014

    盾构及掘进技术国家重点实验室开放课题 SKLST-2019-K06

    详细信息
      作者简介:

      闫长斌(1979—),男,教授,博士,主要从事隧道与地下工程等方面的教学和科研工作。E-mail: yanchangbin_2001@163.com

    • 中图分类号: U455;TV554

    Prediction of TBM advance rate based on Bootstrap method and SVR-ANN algorithm

    • 摘要: 合理评价预测施工速度关乎隧道TBM施工的成败与效益。现有的TBM施工速度预测模型多利用岩体参数和掘进参数预测瞬时/平均施工速度,对掘进过程中的不确定性和施工风险考虑不足。基于此,引入区间预测方法,提出一种基于Bootstrap-SVR-ANN算法的TBM施工速度预测模型。以兰州水源地建设工程输水隧洞双护盾TBM施工为工程依托,分析了单一性输入参数的不足,指出了选择岩体质量分级指标(RMR)、TBM工作条件等级(TWCR)两个综合性参数的合理性,并对构建的TBM施工速度区间预测模型的有效性进行了验证。研究表明,TBM施工速度区间预测模型不但具有良好的点预测效果,而且预测区间可将TBM施工速度的实测值完全包络,模型可靠性较高;模型测试集在90%,95%置信水平下的MPIW分别为9.84,11.73 m/d,随着置信水平的提高,预测区间可容纳的不确定性也不断上升;TBM掘进过程中可能的风险性与区间宽度的异常相互印证,验证了区间预测模型可以定量解释施工过程中不确定性的特点。研究成果可为TBM掘进效能预测、施工工期估算和掘进参数优化等提供科学参考。
      Abstract: The reasonable prediction and evaluation of advance rate is related to the success and benefit of TBM construction. The existing prediction models for TBM advance rate mostly use parameters of rock mass and TBM tunneling to predict the instantaneous/average advance rate. To solve the problem that these models do not consider the influences of uncertainty and risk during TBM tunneling process, a prediction model for TBM advance rate based on the Bootstrap method and SVR-ANN algorithm is proposed by introducing the idea of interval prediction. Based on the project of Lanzhou water sources water conveyance tunnel constructed by double-shield TBM, the shortcomings of some single input parameters are analyzed, and the rationality of two selected comprehensive parameters, namely rock mass quality classification index (RMR) and TBM working condition class (TWCR), is pointed out. In addition, the validity of the developed interval prediction model for TBM advance rate is verified. The results show that the developed interval prediction model for TBM advance rate provides relatively accurate point prediction results and constructs a clear and reliable AR prediction interval to cover the actual TBM advance rate completely. The MPIW of model test set at confidence levels of 90% and 95% is 9.84, 11.73 m/d, respectively. With the improvement of the confidence level, the uncertainty that can be contained in the prediction interval also increases. Moreover, the possible risk of TBM tunneling process and the abnormal interval width confirm each other, which verifies that the interval prediction model can quantitatively explain the characteristics of uncertainty in the construction process. The research results may provide a new idea for the forecasting of TBM tunneling efficiency, the estimation of construction schedule as well as the optimization of tunneling parameters.
    • 在水利工程建设与湖泊、河道的清淤疏浚过程中会产生大量的高含水率疏浚淤泥。在工程上因其力学性质差难以直接利用,通常进行抛泥处理,造成大量的资源浪费和严重的环境污染。水泥固化法处理高含水率淤泥,在填海工程中被大量使用[1]。在水泥固化土的研究中,有学者就水泥固化土强度影响参数方面展开了研究,也有学者为提高水泥土材料的力学特性,研究了掺入其它材料的影响[2-4]

      另一方面,中国每年产生的废弃砖块约占建筑垃圾总量的30%~50%。关于废砖细骨料再生研究中,Letelier等[5]利用再生骨料和废砖粉作为水泥替代品,研究了结构混凝土的力学性能。Kumar等[6]利用废砖细骨料、混凝土细骨料和pozzol烷材料制备砌块,测试了砌块养护28 d后湿压强度、吸水率和吸湿率等特性。中国目前仍存在建筑垃圾排放量大,回收利用率低等问题[7]

      在疏浚土等不良土的处理方法中,还可掺混不同粒径的砂土,通过改变粒径级配达到改善不良土力学特性的目的[8]。基于此,本文在传统水泥固化土方法基础上提出用水泥-废砖细骨料双掺固化处理高含水率黏土的方法,通过测定不同龄期和不同配合比试样的无侧限抗压强度,分析了双掺固化土的应力-应变关系、抗压强度-破坏应变关系及废砖细骨料的掺入对强度的影响。

      (1)通过预试验确定本试验所用细骨料的粒径范围为2~5 mm,密度1.306 g/cm3,吸水率为10.57%。

      (2)所取原状土的物理力学性质指标见表1,通过加入水使其达到本文所设计的含水率72.4%。

      表  1  黏土的物理力学性质指标
      Table  1.  Physical and mechanical properties of clay
      含水率/%孔隙比液限/%塑限/%液性指数塑性指数
      32.060.39755.1115.110.4240.00
      下载: 导出CSV 
      | 显示表格

      (3)采用工程上常用的普通硅酸盐水泥,即P.O 42.5R水泥。

      考虑废砖细骨料掺量分别为0%,8%,10%和12%,水泥掺量分别为6%,8%和10%(均为黏土干质量的百分比)等多种情况,设置7 d和28 d两种养护龄期。每组配合比条件下分别制作3个压缩试样,测定其无侧限抗压强度。试样的制备步骤如下:

      (1)混合底泥进行搅拌。加入计算所需的相应固化剂和细骨料,使用搅拌器匀速搅拌5 min制备一定含水率的黏土-水泥-废砖细骨料混合物,搅拌均匀后制成混合泥浆。

      (2)开展试样制作。为方便后期脱模,在装入混合料前,在模具(直径为3.91 cm,高度为8 cm)内壁均匀涂上一层凡士林。将制备好的混合泥浆,分3次延模具壁一侧缓缓滑入,一次倒入1/3模具容积,每次倒入后作一段时间振捣,使小气泡从表面破出,避免内部气泡间隙对试样强度的影响。灌制满后,用刮刀进行刮平,铺垫保鲜膜后封盖。

      (3)开展试样养护。将试样密封后置于充满水的水箱中,并放置在标准养护室(20±3℃,湿度>95%)内,养护至设计龄期。

      图1为废砖细骨料掺量与无侧限抗压强度在水泥掺量在10%条件下的关系曲线图。由图1可知:当废砖细骨料掺量从10%增加到12%,试样强度均有了较大幅度的提升;但养护龄期为28 d增长率比7 d时略小。分析认为:当养护龄期达到28 d时,近似认为废砖细骨料中的水分达到饱和,此时细骨料的湿润度与周围水泥土湿润度相当,根据再生废砖骨料的吸水返水特性[9]分析可知,此时细骨料的返水能力比吸水能力强,双掺固化土中的水分会有所增加,故出现龄期为28 d的水泥-废砖细骨料双掺固化土的强度增长速率较7 d变缓的现象;在相同废砖细骨料掺量情况下,双掺固化土抗压强度随试样养护龄期的增加而增大,且28 d无侧限抗压强度相较7 d无侧限抗压强度平均提升了1.63倍。

      图  1  废砖细骨料掺量对强度的影响
      Figure  1.  Influences of amount of waste brick fine aggregate on strength

      图2为废砖细骨料掺量在10%条件下,水泥掺量与无侧限抗压强度的关系曲线图。由图2可知:当养护龄期为7 d时,试样强度随水泥掺量的增加成线性增长;养护龄期为28 d,当水泥掺量大于8%时,强度增长速率有减小的趋势。分析认为:这一现象与废砖骨料的吸水返水特性有关;在相同水泥掺量情况下,双掺固化土抗压强度随试样养护龄期的增加而增大,且28 d无侧限抗压强度相较7 d无侧限抗压强度平均提升了约1.44倍。

      图  2  水泥掺量对强度的影响
      Figure  2.  Influences of cement content on strength

      通过对两种固化土的强度特性进行对比分析(图3)发现,龄期为7 d的水泥固化土,随水泥掺量的增加成非直线增长,这与郑少辉等[3]分析不同水灰比固化土的强度所得研究结果相近,即当水泥剂量小于16%时无侧限抗压强度随水泥剂量的增加呈非线性增长。在两种养护龄期下,均出现双掺固化土强度的总体增长速率比水泥固化土强度增长速率高的现象。分析可知,再生废砖细骨料具有孔隙率高、吸水性强等特征,能够吸收土体中部分多余水分,且废砖细骨料含量越多吸水性越强,从而有效降低土体含水率,进而随之强化水泥在低含水率下的固化效率,加快了双掺固化土强度的形成。对7 d龄期条件,当水泥剂量大于等于8%时,废砖细骨料的掺入,明显提高了固化土的强度,说明要使废砖细骨料在改善固化土强度方面发挥作用,对水泥掺量存在一个最低剂量要求。

      图  3  废砖颗粒掺入对强度的影响
      Figure  3.  Influences of waste brick particle on strength

      废砖细骨料为颗粒状,在固化土体中可视为游离状态,在制作无侧限抗压试样时,由于分层振捣处理导致废砖颗粒分布不均,形成的受力骨架也有所差异,故测出的强度不一,导致随着龄期和废砖细骨料含量的增长,强度的变异系数明显变大。

      综上所述,在水泥剂量满足最低要求(本文测的最低剂量为8%)的情况下,废砖细骨料掺入和龄期增长都有利于固化土强度的提升;废砖细骨料的掺入,在增大固化土强度的同时也会增大固化土的变异性。

      图4为双掺固化土无侧限抗压强度试验的破坏形态。试样受压破坏后出现多条裂缝,主裂缝不突出不明显,破坏后试样破碎成块状,为塑性剪切破坏。故水泥-废砖细骨料双掺固化土的破坏形态主要表现为塑性剪切破坏。

      图  4  破坏形态
      Figure  4.  Failure modes

      图5为用水泥-废砖细骨料双掺法处理高含水率黏土的固化土应力-应变曲线图。由图可见其破坏应变分布在2.5%~3%,与水泥固化土的破坏应变一般介于0.5%~2%的认识[8, 11-14]有一定的偏差。分析其原因有两点:①由于废砖骨料在试样中成悬浮分布状态,当其掺量较小时,颗粒之间并没有形成骨架;②当骨料的湿润度与周围水泥土湿润度相当时,骨料表现出返水能力比吸水能力强的特性,使土体的水分略微增加所致。

      图  5  双掺固化土试样应力-应变关系
      Figure  5.  Stress-strain relationship of DMSC samples

      图6为双掺固化土破坏应变与抗压强度的关系曲线。由图6可知,破坏应变随着抗压强度增大呈先略微减小后明显增大的趋势,这与其他学者得出的破坏应变随抗压强度增大而减小的试验结果[8, 10-14]有一定的偏差。分析其原因,主要是废砖的掺入使固化土的韧性在一定程度上得到提升。

      图  6  固化土破坏应变与抗压强度的关系
      Figure  6.  Relationship between failure strain and compressive strength of DMSC samples

      (1)废砖细骨料对高含水率水泥固化土的强度有显著的提升效果,且早期强度增长速率比后期快。

      (2)要发挥废砖细骨料的作用,水泥掺量需满足最低剂量8%的要求;掺入废砖细骨料在提高固化土强度的同时,也增加了固化土的变异性。控制变异性可提高其在工程建设上应用的安全可靠性。

      (3)双掺法处理高含水率黏土固化土的破坏形态主要表现为塑性剪切破坏,其破坏应变在2.5%~3%,韧性比一般固化土的韧性好。

    • 图  1   区间预测流程简图

      Figure  1.   Flow chart of interval prediction

      图  2   输水隧洞线路区工程地质剖面图

      Figure  2.   Engineering geological section of route area of water conveyance tunnel

      图  3   参数相关性分析

      Figure  3.   Correlation between parameters

      图  4   区间预测结果对比

      Figure  4.   Comparison of interval prediction results

      表  1   TBM主要设计参数

      Table  1   Main design parameters of TBM

      设计参数开挖直径/mm滚刀数量/把中心滚刀正滚刀边滚刀最大刀间距/mm刀盘转速/(r·min-1)刀盘功率/kW最大刀盘推力/kN额定扭矩/(kN·m-1)脱困扭矩/(kN·m-1)最大掘进速度/(mm·min-1)
      数量/把直径/mm数量/把直径/mm数量/把直径/mm
      TBM154803764322148310483860~10.318002216034585878120
      TBM25480304432174839483830~8.721001190042106940120
      下载: 导出CSV

      表  2   不同岩性地质单元中关键参数

      Table  2   Key parameters in different lithologic geological units

      岩性地质单元里程桩号/mUCS/MPaCAITF/103kNRPM/(r·min-1)RMR平均值TBM工作条件等级AR/(m·d-1)
      1T6+679.1—T6+914.9703.028.956.8071326.20
      2T6+914.9—T7+122.3703.028.576.7065325.93
      3T7+462.9—T8+130.3703.498.336.5069322.25
      4T8+130.3—T8+441.3703.028.716.0070314.81
      5T8+615.6—T9+199.4703.458.526.4077326.54
      6T9+199.4—T9+259.8152.933.504.5010112.88
      7T9+259.8—T9+331.8452.934.005.002095.54
      8T9+468.4—T9+979.4702.938.686.7072217.03
      9T10+934.5—T11+110.7603.458.226.4051629.37
      10T11+110.7—T11+555.8452.935.484.9031814.36
      11T12+969.5—T13+847.5400.824.505.5054428.26
      12T13+847.5—T14+662.9400.824.305.4056426.30
      13T14+977.3—T15+387.5300.824.155.1039720.51
      14T19+747.8—T19+462.3151.823.254.5011119.21
      15T19+815.5—T19+747.8401.823.825.1027722.57
      16T20+060.0—T19+815.5502.514.855.5055520.37
      17T20+282.5—T20+060.0502.515.086.3060522.25
      18T20+515.1—T20+282.5652.518.356.1061217.89
      19T20+801.5—T20+515.1652.518.106.9062217.90
      20T20+887.6—T20+801.5401.823.755.7033821.53
      21T21+360.3—T21+115.8651.826.256.6071214.38
      22T22+888.2—T22+821.9652.515.856.8065216.58
      23T23+165.5—T22+888.2501.824.855.9057527.73
      24T23+467.1—T23+290.0502.514.575.4051525.30
      25T23+638.5—T23+467.1502.515.255.8049524.49
      26T23+791.4—T23+638.5502.514.685.1047521.84
      27T24+877.8—T24+768.1300.823.675.4028721.94
      28T25+051.7—T24+880.0400.824.856.2045428.62
      29T25+225.9—T25+051.7400.825.155.1047424.89
      30T25+558.4—T25+370.8300.823.765.5032723.45
      31T25+926.9—T25+643.2400.823.805.4050420.26
      32T26+341.3—T26+025.9300.824.334.8035726.28
      33T27+587.3—T27+126.3300.823.574.7026721.95
      34T28+429.1—T28+274.9400.753.304.9039422.03
      35T29+505.7—T29.378.8300.823.855.5027721.15
      下载: 导出CSV

      表  3   不同影响参数的拟合决定系数R2

      Table  3   R2 of different influence parameters

      影响参数线性函数二次函数对数函数幂函数S函数指数函数
      UCS0.0240.1880.0580.1110.1930.058
      CAI0.0690.1570.0900.0870.0930.075
      TF0.0200.0610.0290.0480.0640.035
      RPM0.0810.3100.0970.1380.1600.117
      下载: 导出CSV

      表  4   AR的点预测与区间预测结果

      Table  4   Results of point and interval prediction of AR

      序号里程桩号/m围岩类别真实值/(m·d-1)点预测值/(m·d-1)置信水平90%区间/(m·d-1)置信水平95%区间/(m·d-1)
      1T7+122.3—T7+322.2石英片岩Ⅱ22.2123.46[21.404,25.517][21.010,25.911]
      2T9+331.8—T9+468.4花岗岩Ⅱ17.0822.46[13.610,31.311][11.915,33.005]
      3T21+115.8—T20+887.6变质安山岩Ⅲ22.8224.81[21.535,28.091][20.907,28.718]
      4T21+582.3—T21+360.3变质安山岩Ⅱ18.5022.67[15.810,29.530][14.497,30.844]
      5T22+475.6—T22+369.5变质安山岩Ⅱ17.6822.89[14.320,31.464][12.677,33.106]
      6T23+949.2—T23+852.9变质安山岩Ⅳ24.0719.60[12.255,26.951][10.848,28.358]
      7T26+527.8—T26+341.3砂岩Ⅲ26.6424.11[19.952,28.271][19.156,29.067]
      8T27+821.5—T27+663.9砂岩Ⅲ26.2624.99[22.913,27.076][22.514,27.475]
      9T28+051.6—T27+849.9砂岩Ⅳ22.4119.79[15.486,24.098][14.662,24.923]
      10T29+963.9—T29+840.6砂岩Ⅳ20.5519.52[17.827,21.214][17.503,21.538]
      下载: 导出CSV
    • [1] 王梦恕. 岩石隧道掘进机(TBM)施工及工程实例[M]. 北京: 中国铁道出版社, 2004.

      WANG Meng-shu. Rock Tunnel Boring Machine (TBM) and Engineering Projects[M]. Beijing: China Railway Publishing House, 2004. (in Chinese)

      [2]

      BRULAND A. Hard Rock Tunnel Boring[D]. Trondheim: Norwegian University of Science and Technology, 1998.

      [3]

      BARTON N. TBM Tunnelling in Jointed and Faulted Rock[M]. Boca Raton: CRC Press, 2000: 170-175.

      [4]

      BENARDOS A G, KALIAMPAKOS D C. Modelling TBM performance with artificial neural networks[J]. Tunnelling and Underground Space Technology, 2004, 19(6): 597-605. doi: 10.1016/j.tust.2004.02.128

      [5]

      GRIMA M A, BRUINES P A, VERHOEF P N W. Modeling tunnel boring machine performance by neuro-fuzzy methods[J]. Tunnelling and Underground Space Technology, 2000, 15(4): 501. doi: 10.1016/S0886-7798(01)00022-0

      [6]

      ZHOU J, BEJARBANEH B Y, ARMAGHANI D J, et al. Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming echniques[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(4): 2069-2084. doi: 10.1007/s10064-019-01626-8

      [7] 蒋朝辉, 董梦林, 桂卫华, 等. 基于Bootstrap 的高炉铁水硅含量二维预报[J]. 自动化学报, 2016, 42(5): 715-723. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201605011.htm

      JIANG Zhao-hui, DONG Meng-lin, GUI Wei-hua, et al. Two-dimensional prediction for silicon content of hot metal of blast furnace based on bootstrap[J]. Acta Automatica Sinica, 2016, 42(5): 715-723. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201605011.htm

      [8]

      EFRON B. Bootstrap methods: another look at the jackknife[J]. Annals of Statistics, 1979, 7(1): 1-26.

      [9]

      LI D, TANG X, PHOON K. Bootstrap method for characterizing the effect of uncertainty in shear strength parameters on slope reliability[J]. Reliability Engineering and System Safety, 2015, 140: 99-106. doi: 10.1016/j.ress.2015.03.034

      [10]

      WAN C, XU Z, WANG Y, et al. A hybrid approach for probabilistic forecasting of electricity price[J]. IEEE Transactions on Smart Grid, 2014, 5(1): 463-470. doi: 10.1109/TSG.2013.2274465

      [11]

      MA J, TANG H, LIU X, et al. Probabilistic forecasting of landslide displacement accounting for epistemic uncertainty: a case study in the Three Gorges Reservoir area, China[J]. Landslides, 2018, 15(6): 1145-1153. doi: 10.1007/s10346-017-0941-5

      [12] 李麟玮, 吴益平, 苗发盛, 等. 基于不同Bootstrap 方法和KELM-BPNN 模型的滑坡位移区间预测[J]. 岩石力学与工程学报, 2019, 38(5): 912-926. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201905006.htm

      LI Lin-wei, WU Yi-ping, MIAO Fa-sheng, et al. Landslide displacement interval prediction based on different Bootstrap methods and KELM-BPNN model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(5): 912-926. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201905006.htm

      [13] 孙东磊, 王艳, 于一潇, 等. 基于BP 神经网络的短期光伏集群功率区间预测[J]. 山东大学学报(工学版), 2020, 50(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY202005011.htm

      SUN Dong-lei, WANG Yan, YU Yi-xiao. Interval Prediction of short-term regional photovoltaic power based on BP neural network[J]. Journal of Shandong University (English Science), 2020, 50(4): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY202005011.htm

      [14] 龙志和, 欧变玲. Bootstrap 方法在经济计量领域的应用[J]. 工业技术经济, 2008, 27(7): 132-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZJ200807038.htm

      LONG Zhi-he, OU Bian-ling. Bootstrap method in econometric applications[J]. Industrial Technology and Economy, 2008, 27(7): 132-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GHZJ200807038.htm

      [15]

      PRADHAN B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS[J]. Computers & Geosciences, 2013, 51: 350-365. doi: 10.3969/j.issn.1001-3695.2013.02.007

      [16] 郭卫新, 杨继华, 齐三红, 等. 花岗岩地层双护盾TBM 卡机原因分析及处理措施[J]. 资源环境与工程, 2017, 31(5): 610-613. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201705022.htm

      GUO Wei-xin, YANG Ji-hua, QI San-hong. Cause analysis and treatment measures of double shield TBM blocked in granite stratum[J]. Resources Environment & Engineering, 2017, 31(5): 610-613. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201705022.htm

      [17] 刘泉声, 刘建平, 潘玉丛, 等. 硬岩隧道掘进机性能预测模型研究进展[J]. 岩石力学与工程学报, 2016, 35(增刊1): 2767-2786. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1021.htm

      LIU Quan-sheng, LIU Jian-ping, PAN Yu-cong, et al. Research advances of tunnel boring machine performance prediction models for hard rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 2767-2786. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1021.htm

      [18] 杨媛媛, 黄宏伟. 围岩分类在TBM滚刀寿命预测中的应用[J]. 地下空间与工程学报, 2005, 1(5): 721-724. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200505015.htm

      YANG Yuan-yuan, HUANG Hong-wei. Application of rock mass classification in cutter life prediction of TBM[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(5): 721-724. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200505015.htm

      [19]

      ZIO E. A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes[J]. IEEE Transactions on Nuclear Science, 2006, 53(3): 1460-1478. doi: 10.1109/TNS.2006.871662

    • 期刊类型引用(3)

      1. 肖源杰,王政,AMINU Umar Faruk,王萌,李昀博,孔坤锋,陈宇亮,周震,李志勇. 不同建筑固废再生骨料取代率下粗粒土填料永久变形特性及安定行为研究. 中南大学学报(自然科学版). 2024(03): 1008-1022 . 百度学术
      2. 宾伟,黄靓,曾令宏,刘文琦,屈辉,彭龙辉,李东. 水泥固化再生骨料改性盐渍土的路用性能研究. 公路. 2024(08): 94-100 . 百度学术
      3. 肖源杰,王政,AMINU Umar Faruk,王萌,李昀博,孔坤锋,陈宇亮,周震,李志勇. 不同建筑固废再生骨料取代率下粗粒土填料永久变形试验及预估模型. 中国公路学报. 2023(10): 17-29 . 百度学术

      其他类型引用(12)

    图(4)  /  表(4)
    计量
    • 文章访问数:  304
    • HTML全文浏览量:  47
    • PDF下载量:  168
    • 被引次数: 15
    出版历程
    • 收稿日期:  2020-07-21
    • 网络出版日期:  2022-12-02
    • 刊出日期:  2021-05-31

    目录

    /

    返回文章
    返回