• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

红黏土土质覆盖层水力参数随服役时间演变规律分析

焦卫国, 季永新, 张玥, 贺明卫, 刘振男

焦卫国, 季永新, 张玥, 贺明卫, 刘振男. 红黏土土质覆盖层水力参数随服役时间演变规律分析[J]. 岩土工程学报, 2021, 43(6): 1059-1068. DOI: 10.11779/CJGE202106009
引用本文: 焦卫国, 季永新, 张玥, 贺明卫, 刘振男. 红黏土土质覆盖层水力参数随服役时间演变规律分析[J]. 岩土工程学报, 2021, 43(6): 1059-1068. DOI: 10.11779/CJGE202106009
JIAO Wei-guo, JI Yong-xin, ZHANG Yue, HE Ming-wei, LIU Zhen-nan. Evolution of hydraulic parameters of red clay cover with service time[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1059-1068. DOI: 10.11779/CJGE202106009
Citation: JIAO Wei-guo, JI Yong-xin, ZHANG Yue, HE Ming-wei, LIU Zhen-nan. Evolution of hydraulic parameters of red clay cover with service time[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1059-1068. DOI: 10.11779/CJGE202106009

红黏土土质覆盖层水力参数随服役时间演变规律分析  English Version

基金项目: 

国家自然科学基金项目 52069005

黔科合基础 [2019]1143

中建四局科技 CSCEC4B-2020-KT-6

六盘水科技 52020-2018-01-04

详细信息
    作者简介:

    焦卫国(1983—),男,副教授,博士,主要从事非饱和土力学方面的教学和科研。E-mail: 805810460@qq.com

  • 中图分类号: TU43

Evolution of hydraulic parameters of red clay cover with service time

  • 摘要: 红黏土具有高液(塑)限、低渗透、中—低压缩性和较高的力学强度,在西南喀斯特地区广泛用于路基、土石坝、各类尾矿和垃圾填埋封顶覆盖等防渗工程。对红黏土开展了实验室和现场水力参数对比测试;在填埋场建设了红黏土覆盖层试验区并开展了自然气候条件下的长期服役水力参数监测;分析对比了有、无植被红黏土水力参数的不同变化。结果表明:①红黏土饱和渗透系数在10-7 cm/s量级,渗透性低,防渗性能好;有效储水率约18.8%,与粉土—粉质黏土相当,储水能力好。②现场大体量大范围施工而实验室精细制样导致两者土样结构有显著差异。干密度相近时,现场土饱和入渗系数比室内重塑土大36.62%,防渗设计中应充分考虑实验室到现场间压实土防渗性能的“打折”现象。③在2.0年的长期服役中,无植被红黏土覆盖层在日照、降雨循环作用下因土层开裂导致渗透系数较建设之初最大增加2.9×104倍;有植被时渗透系数较建设之初或减小或增加,最大增加10倍,且与植被生长状态有关。有、无植被红黏土入渗系数和开裂情况对比表明:植被对土质覆盖层细粒土因日照-降雨气候作用导致防渗性能的劣化有明显的抑制作用。
    Abstract: Red clay is characterized by high liquid (plastic) limit, low permeability, medium-low compressibility and highmechanical strength. It is widely used in anti-seepage projects such as roadbed, earth dam, tailings and landfill cover in karst areas of southwest China. The hydraulic parameters of the red clay are tested in laboratory and field. The test area of red clay cover is built in landfill site, and the long-term service hydraulic characteristic parameters are monitored in natural climate. The hydraulic parameters of the red clay cover with and without vegetation are analyzed. The results show that: (1) The saturated permeability coefficient of the red clay is 10-7 cm/s with low permeability and good anti-seepage performance. The effective water storage rate is about 18.8%, which is equivalent to that of silt and silty clay, and the water storage capacity is acceptable. (2) The large-scale construction in the field and the fine sample preparation in the laboratory lead to significant differences in the structure of the two soil samples. With similar dry density, the saturated permeability coefficient of field red clay is 36.62% higher than that of laboratory remold red clay. The "discount" phenomenon of anti-permeability of compacted soil from laboratory to site should be fully considered. (3) In long-term service of 2.0 years, the permeability of the red clay cover without vegetation increases by the maximum increase of 5×103 times that at the beginning of construction due to soil cracking under the sun-rainfall cycle. With vegetation, the permeability increases or decreases compared with that at the beginning of construction (the maximum increase of 10 times) and is related to the vegetation growth state. It is shown that the vegetation has an obvious inhibitory effect on the permeability deterioration of fine-grained soil due to sun-rainfall cycles.
  • 图  1   试验填埋场现场情况

    Figure  1.   Site situation of experimental landfill

    图  2   现场双套环入渗试验

    Figure  2.   Field infiltration tests of double rings

    图  3   红黏土粒径级配曲线

    Figure  3.   Grain-size distribution curve of red clay

    图  4   现场试验区覆盖层红黏土原状样

    Figure  4.   Undisturbed sample of red clay in field test cover

    图  5   不同压实度(干密度)重塑红黏土土水特征曲线

    Figure  5.   Soil water characteristic curves of remolded red clay soil with different degrees of compaction (dry densities)

    图  6   类似研究的覆盖层细粒土SWCC

    Figure  6.   SWCCs of fine-grained soil in cover

    图  7   近似干密度室内重塑和现场红黏土土水特征曲线对比

    Figure  7.   Comparison of soil-water characteristic curves in laboratory remoulding and field red clay with approximate dry density

    图  8   现场土和室内重塑土对比

    Figure  8.   Comparison between field soil and laboratory remolded soil

    图  9   不同测试方法和环境红黏土土水特征点对比

    Figure  9.   Comparison of soil-water characteristic points of red clay under different environments by different test methods

    图  10   现场红黏土自然降雨气候下的土水特征点

    Figure  10.   Soil-water characteristic points of red clay under natural rainfall climate

    图  11   自然气候条件下红黏土不同服役时间土水特征曲线

    Figure  11.   Soil-water characteristic curves of red clay in different service time under natural climate

    图  12   自然气候条件下不同服役时间红黏土的土水特征曲线

    Figure  12.   Soil-water characteristic curves of red clay in different service time under natural climate (dehydration process)

    图  13   自然气候条件下不同服役时间红黏土的土水特征曲线(吸湿过程)

    Figure  13.   Soil-water characteristic curves of red clay in different service time under natural climate (adding moisture process)

    图  14   自然气候长期服役有植被条件下覆盖层红黏土结构

    Figure  14.   Structure of red clay cover with vegetation in long-term service in natural climate

    图  15   现场试验区建造之初双套环入渗系数曲线

    Figure  15.   Infiltration curves of double rings at beginning of construction of field test area

    图  16   现场无植被条件不同服役时间红黏土入渗曲线

    Figure  16.   Infiltration curves of double rings of red clay in different service time without vegetation on site

    图  17   长期服役过程中现场探洞观测无植被条件红黏土裂缝

    Figure  17.   Observation of cracks in red clay without vegetation by on-site exploration during long-term service

    图  18   现场有植被条件不同服役时间红黏土入渗曲线

    Figure  18.   Infiltration curves of double rings of red clay in different service time with vegetation on site

    图  19   长期服役过程中现场探洞观测有植被条件红黏土裂缝

    Figure  19.   Observation of cracks in red clay with vegetation by on-site exploration during long-term service

    图  20   红黏土与文献[5]黏性黄土非饱和渗透系数对比

    Figure  20.   Comparison of unsaturated permeability between red clay and clay loess in paper[5]

    表  1   现场和室内开展的试验测试项目

    Table  1   Items of field and laboratory tests

    室内试验现场试验
    重塑红黏土的基本物理性质和参数现场覆盖层红黏土体积含水率和基质吸力长期监测
    室内重塑土变水头饱和渗透系数现场覆盖层双套环原位入渗试验
    室内重塑土的土水特征曲线现场降雨量等气候条件和植被参数
    从现场取回的覆盖层原状土土水特征曲线现场覆盖层红黏土裂缝观测
    下载: 导出CSV

    表  2   国内外类似研究覆盖层细粒土土水特征值

    Table  2   Characteristic values of fine soil of cover in similar studies

    文献中土类名称土类划分饱和含水率θs/%田间持水率θc/%残余含水率θm/%有效储水率θa/%
    silty sand(Khire[22]粉质黏土42.028.310.417.9
    Fine soil(Morris[23]粉质黏土40.030.28.022.0
    Silt loam(Scanlon[24]粉质黏土47.027.48.019.5
    钱塘江粉土(邓林恒[20]粉土44.832.08.024.0
    细粒土(Ng C W W[20]粉土43.130.08.022.0
    C类黏性黄土(焦卫国等[5]粉质黏土47.134.612.122.5
    本文红黏土黏土49.4139.8521.0918.8
    注:*上述土储水能力指标因干密度不同而略有差异,“土类划分”为根据中国GB50007—2011标准进行的分类。
    下载: 导出CSV

    表  3   自然气候条件下不同服役时间红黏土的土水特征曲线V-G模型拟合参数和有效储水率(脱湿过程)

    Table  3   Fitting parameters of V-G model and effective water storage rates of SWCCs of red clay in different service time under natural climate (dehydration process)

    时间θsθranθa
    现场初始49.0518.782.591.0116.30
    现场第一年50.2720.126.311.1617.03
    现场第二年50.3119.748.521.1918.11
    下载: 导出CSV

    表  4   自然气候条件下不同服役时间红黏土的土水特征曲线V-G模型拟合参数和有效储水率(吸湿过程)

    Table  4   Fitting parameters of V-G model and effective water storage rates of SWCCs of red clay in different service time under natural climate (adding moisture process)

    时间θsθranθa
    现场初始34.118.7843.301.5512.22
    现场第一年37.120.1227.161.5111.81
    现场第二年36.0819.7430.631.5412.01
    下载: 导出CSV

    表  5   现场无植被红黏土不同服役时间稳定入渗系数

    Table  5   Infiltration coefficients of red clay without vegetation in long-term service

    时间干密度/(g·cm-3)稳定入渗系数kf/(cm·s-1)
    建造之初(0.0 a)1.371.94×10-7
    半年(0.51 a)1.372.38×10-6
    1年(1.07 a)1.375.65×10-3
    2年(2.03 a)1.378.11×10-5
    注:测试方法现场双套环。
    下载: 导出CSV

    表  6   现场有植被红黏土稳定入渗系数随服役时间变化规律

    Table  6   Infiltration coefficients of red clay with vegetation in long-term service

    时间干密度/(g·cm-3)稳定入渗系数kf/(cm·s-1)
    建造之初(0.0 a)1.371.94×10-7
    半年(0.51 a)1.371.78×10-7
    1年(1.07 a)1.377.49×10-7
    2年(2.03 a)1.371.03×10-6
    注:测试方法现场双套环。
    下载: 导出CSV
  • [1] 孔雀. 废木灰处理红黏土的水力性能研究[J]. 公路工程, 2016, 41(4): 270-273. doi: 10.3969/j.issn.1674-0610.2016.04.054

    KONG Que. Research on the hydraulic performance of red clay treated with waste wood ash[J]. Highway Engineering, 2016, 41(4): 270-273. (in Chinese) doi: 10.3969/j.issn.1674-0610.2016.04.054

    [2] 谭邦宏. 红黏土作为垃圾填埋场防渗垫层的研究进展[J]. 四川建筑, 2015, 35(6): 107-108, 111. doi: 10.3969/j.issn.1007-8983.2015.06.039

    TAN Bang-hong. Research progress of red clay as impermeable cushion in landfill[J]. Sichuan Architecture, 2015, 35(6): 107-108, 111. (in Chinese) doi: 10.3969/j.issn.1007-8983.2015.06.039

    [3] 彭玉林, 龚爱民, 孙海燕, 等. 垃圾填埋场中改性红黏土防渗料的性能研究[J]. 人民长江, 2011, 42(增刊2): 163-165, 169. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2011S2057.htm

    PENG Yu-lin, GONG Ai-min, SUN Hai-yan, et al. Study on properties of modified red clay anti-seepage materials in landfill sites[J]. People's Yangtze River, 2011, 42(S2): 163-165, 169. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2011S2057.htm

    [4] 万勇, 薛强, 赵立业, 等. 干湿循环对填埋场压实黏土盖层渗透系数影响研究[J]. 岩土力学, 2015, 36(3): 679-686, 693. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503013.htm

    WAN Yong, XUE Qiang, ZHAO Li-ye, et al. Study on the influence of dry-wet cycle on the permeability coefficient of compacted clay cover in landfill[J]. Rock and Soil Mechanics, 2015, 36(3): 679-686, 693. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503013.htm

    [5] 焦卫国. 西北黄土/碎石覆盖层水分存储—释放机理及防渗设计方法[D]. 杭州: 浙江大学, 2015.

    JIAO Wei-guo. Water Storage and Release of Loess-Gravel Cover and Seepage Prevention Design Method in Northwest of China[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)

    [6]

    STORMONT J C. Unsaturated drainage layers for diversion of infiltrating water[J]. Journal of Irrigation and Drainage Engineering, 1997, 123: 364-366. doi: 10.1061/(ASCE)0733-9437(1997)123:5(364)

    [7]

    STORMONT J C. The effectiveness of two capillary barriers on a 10% slope[J]. Geotechnical and Geological Engineering, 1996, 14(4): 243-267. doi: 10.1007/BF00421943

    [8]

    STORMONT J C, MORRIS C E. Method to estimate water storage capacity of capillary barriers[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(6): 297-303.

    [9]

    KHIRE M, BENSON C, BOSSCHER P. Field-scale comparison of capillary and resistive landfill covers in an arid climate[C]//14th Annual American Geophysical Union Hydrology Days, 1994, Colorado: 5-8.

    [10]

    BENSON C, SAWANG SURIYA A, TRZEBIATOWSKI B, et al. Pedogenic effects on the hydraulic properties of water balance cover soils[J]. Journal of Geotech and Geoenv Engr, 2007, 133: 349-359. doi: 10.1061/(ASCE)1090-0241(2007)133:4(349)

    [11] 张文杰, 耿潇. 垃圾填埋场毛细阻滞型腾发封顶工作机理及性能分析[J]. 岩土工程学报, 2016, 38(3): 454-459. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603011.htm

    ZHANG Wen-jie, GENG Xiao. Performance and mechanism of capillary-barrier evaportranspiration cover of landfills[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 454-459. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603011.htm

    [12] 张文杰, 邱战洪, 朱成仁, 等. 长三角地区填埋场ET 封顶系统的性能评价[J]. 岩土工程学报, 2009, 31(3): 384-389. doi: 10.3321/j.issn:1000-4548.2009.03.013

    ZHANG Wen-jie, QIU Zhan-hong, ZHU Cheng-ren, et al. Evaluation of evapotranspiration covers of landfills in Yangtze river delta region[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 384-389. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.03.013

    [13]

    AUBERTIN M, CIFUENTES E, APITHY S A, et al. Analyses of water diversion along inclined covers with capillary barrier effects[J]. Canadian Geotechnical Journal, 2009, 46: 1146-1164. doi: 10.1139/T09-050

    [14] 张文杰, 林午, 董林兵. 垃圾填埋场毛细阻滞型腾发封顶模型试验[J]. 岩土力学, 2014, 35(5): 1263-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405007.htm

    ZHANG Wen-jie, LIN Wu, DONG Lin-bing. Model test of a capillary barrier evapotranspiration cover for landfills[J]. Rock and Soil Mechanics, 2014, 35(5): 1263-1268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405007.htm

    [15] 焦卫国, 詹良通, 季永新, 等. 植被对土质覆盖层水分运移和存储影响试验研究[J]. 岩土工程学报, 2020, 42(7): 1268-1275. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007014.htm

    JIAO Wei-guo, ZHAN Liang-tong, JI Yong-xin, et al. Experimental study on the effect of vegetation on water transport and storage in soil cover[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1268-1275. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007014.htm

    [16] 邱清文, 张文杰, 程泽海. 湿润地区垃圾填埋场蒸发蒸腾覆盖层参数分析[J]. 岩土力学, 2012, 33(增刊1): 283-289. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S1046.htm

    QIU Qing-wen, ZHANG Wen-jie, CHENG Ze-hai. Parameter analysis of evapotranspiration overburden of landfill in humid area[J]. Rock and Soil Mechanics, 2012, 33(S1): 283-289. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S1046.htm

    [17]

    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1981, 44(5): 892-898.

    [18] 焦卫国, 詹良通, 季永新, 等. 黄土-碎石毛细阻滞覆盖层储水能力实测与分析[J]. 岩土工程学报, 2019, 41(6): 1149-1157. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906022.htm

    JIAO Wei-guo, ZHAN Liang-tong, JI Yong-xin, et al. Field tests on water storage capacity of loess-gravel capillary barrier covers[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1149-1157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906022.htm

    [19] 詹良通, 焦卫国, 孔令刚, 等. 黄土作为西北地区填埋场覆盖层的可行性及设计厚度分析[J]. 岩土力学, 2014, 35(12): 3361-3369. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412003.htm

    ZHAN Liang-tong, JIAO Wei-guo, KONG Ling-gang, et al. Feasibility analysis of using loess as soil cover material for landfills in the northwest of China[J]. Rock and Soil Mechanics, 2014, 35(12): 3361-3369. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412003.htm

    [20] 邓林恒, 詹良通, 陈云敏, 等. 含非饱和导排层的毛细阻滞型覆盖层性能模型试验研究[J]. 岩土工程学报, 2012, 34(1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201004.htm

    DENG Lin-heng, ZHAN Liang-tong, CHEN Yun-min, et al. Model tests on capillary-barrier cover with unsaturated drainage layer[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 75-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201004.htm

    [21]

    NG C W W, LIU J, CHEN R, et al. Physical and numerical modeling of an inclined three-layer (silt/gravelly sand/clay) capillary barrier cover system under extreme rainfall[J]. Waste Management, 2015, 38(4): 210-221.

    [22]

    KHIRE M V, BENSON C H, BOSSCHER P J. Capillary barriers: design variables and water balance[J]. Journal of Geotechnical and Geoenvironmental Engineering. 2000, 126: 695-708.

    [23]

    MORRIS C E, STORMONT J C. Evaluation of numerical simulations of capillary barrier field tests[J]. Geotechnical and Geological Engineering, 1998, 16(3): 201-213.

    [24]

    SCANLON B R, CHRISTMAN M, REEDY R C, et al. Intercode comparisons for simulating water balance of surficial sediments in semiarid regions[J]. Water Resour Res, 2002, 38(12): 1323.

    [25]

    NG C W W, NI J J, LEUNG A K, et al. Effects of planting density on tree growth and induced soil suction[J]. Géotechnique, 2016, 66(9): 711-724.

    [26]

    NI J J, LEUNG A K, NG C W W. Investigation of plant growth and transpiration-induced suction under mixed grass-tree conditions[J]. Canadian Geotechnical Journal, 2017, 54(4): 561-573.

图(20)  /  表(6)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-05-31

目录

    /

    返回文章
    返回