Model tests on characteristics and evolution of tunnel collapse in soil-sand interbedded strata
-
摘要: 塌方作为软弱地层隧道施工建设的一个重大安全风险,在层状地层隧道建设中尤其值得格外关注。隧道塌方的预防和管控得益于其表现及演变规律的全面掌控。以第四系土砂互层地层隧道为研究对象,通过相似模型试验并结合数字图像处理技术,首次研究得出土砂互层地层隧道塌方特征及演变规律。结果表明:①围岩破坏非瞬间破坏、而呈渐进性破坏,破坏始于拱脚处围岩裂隙发育并向上扩展、拱脚处围岩产生局部掉块,接着拱顶上方围岩小范围塌落,裂隙扩展和失稳塌落循序渐进,拱顶上方围岩大范围塌落,最终使得拱顶上方围岩不断离层破坏。②土砂互层地层隧道拱顶上方围岩破坏表现为“层内围岩剪切破坏,层间围岩离层弯曲破坏”的塌方特征,互层特性对塌方影响显著,跨厚比越大、砂土比越大,塌方破坏越显著。③塌方对拱顶上方围岩沉降主要影响范围为1倍隧道跨度,隧道施工建设中应加强上述范围内围岩加固。所得结果能够为土砂互层地层隧道施工建设过程中的塌方防控提供借鉴。Abstract: As a major safety risk in the construction of tunnels in soft strata, collapse deserves special attention in the construction of tunnels in layered strata. In order to prevent and control tunnel collapse, it is necessary to fully grasp the characteristics and evolution law of collapse. A tunnel in the Quaternary soil-sand interbedded strata is taken as the research object. By using model tests and digital image processing technology, the collapse characteristics and evolution laws of the tunnel in soil-sand interbedded strata are studied for the first time. The results show that: (1) The failure of the surrounding rock is not instantaneous, but gradual. It starts from the cracks in the surrounding rock at the foot of the arch and expands upward, and local falling of the surrounding rock is induced. Then the surrounding rock above the vault of the arch collapses in a small range, the crack expansion and instability occur step by step, and the surrounding rock above the vault of the arch collapses in a large range and eventually breaks away from the stratum contineously. (2) The collapse of the surrounding rock above the vault of the arch of the tunnel in the soil-sand interbedded stratum is characterized by "shear failure of the surrounding rock in the stratum and bending failure of the surrounding rock in the interbedded stratum". The interbedded characteristics have a significant influence on the collapse. The larger the ratio of span to depth and the larger the ratio of sand to soil, the more obvious the collapse failure. (3) The main influence range of the collapse on the settlement of the surrounding rock above the vault of the arch is 1 times the tunnel span, and the reinforcement of the surrounding rock should be strengthened in the above area during tunnel construction. The results may provide reference for the prevention and control of the collapse in the process of the tunnel construction in soil-sand interbedded strata.
-
全球性的气候问题与突发自然灾害使得岩土及地下工程灾变问题不断凸现,给岩土工程安全与运营构成巨大挑战。岩土体作为地球表面最为广泛存在的地质材料具有复杂的物理力学特性与显著的时空变异性。岩土工程物理模拟试验技术通过融合多学科知识模拟和再现岩土体在自然与工程状态下的物理力学行为,为复杂岩土工程问题的解决提供强力支撑。“交通强国”等重大国家战略的实施也给岩土工程带来了巨大的历史机遇。岩土工程防灾减灾问题由于其普遍性、迫切性和前沿性也成为岩土及地下工程领域研究的新热点。随着科技的进步,岩土工程物理模拟试验技术也正从传统的重力场模拟、离心试验,向数字与智能化转变,而世界级超大型试验设备的建设,更将极大驱动我国岩土工程物理模拟试验技术的未来发展。
为促进我国岩土工程物理模拟试验技术学术交流,由中国水利学会岩土力学专业委员会和中国土木工程学会土力学及岩土工程分会共同主办,交通运输部天津水运工程科学研究院、南京水利科学研究院、中交天津港湾工程研究院有限公司以及天津大学承办的第十届岩土工程物理模拟学术研讨会于2024年8月在天津市滨海新区举行。本届会议是继武汉(2011年)、杭州(2013)、北京(2017)、喀什(2023)会议后全国岩土工程物理模拟试验技术领域的又一次学术盛会。会议筹备期间共收到投稿论文113篇,经过审稿委员会的审议向《岩土工程学报》(增刊)推荐稿件51篇,并在学报2024年增刊1专刊出版。同时,本届研讨会举办了砂土场地桩基水平承载力平行试验,并以特邀报告、主题报告、青年学者报告等在内的形式开展广泛深入的交流,展现最新模拟技术和研究成果,探讨岩土工程物理模拟试验技术在交通强国基础设施建设与防灾减灾研究中的应用,以促进岩土工程物理模拟试验技术对我国重大战略和重大工程的技术支撑作用。
感谢对本届会议召开鼎力相助的交通运输部天津水运工程科学研究院及各有关单位,感谢向本届会议投稿的各位专家和同行,感谢审稿专家对本次会议审稿工作的辛勤付出。尤其是《岩土工程学报》编辑部,为使本届会议的论文集面世,做了大量工作,专门编辑出版了本期增刊,特此表示感谢。
第十届全国岩土工程物理模拟学术研讨会组委会 -
表 1 隧道支护参数
Table 1 Supporting parameters of tunnel
围岩级别及衬砌类型 初期支护 二次衬砌 C25喷射混凝土 格栅钢架 拱墙 仰拱 围岩级别 衬砌类型 部位 厚度/cm 部位 型号/间距 厚度/cm 厚度/cm VI Ⅵ 全环 37 全环 H300@0.5 m 60 60 表 2 相似模型试验参数相似比设计
Table 2 Similarity ratio design of model test parameters
参数 几何 重度 应变 内摩擦角 泊松比 弹性模量 黏聚力 应力 位移 相似比 50 1 1 1 1 50 50 50 50 表 3 砂层围岩物理力学参数设计
Table 3 Design of physical and mechanical parameters of surrounding rock of sand
砂层围岩 重度/(kN·m-3) 弹性模量/MPa 泊松比 黏聚力/kPa 内摩擦角φ/(°) 隧道原型实测值 20.50 20.530 0.25 16.580 28.76 相似理论计算值 20.50 0.411 0.25 0.332 28.76 相似模型试验值 19.68 0.408 0.23 0.301 29.50 表 4 土层围岩物理力学参数设计
Table 4 Design of physical and mechanical parameters of surrounding rock of soil
土层围岩 重度/(kN·m-3) 弹性模量/MPa 泊松比 黏聚力/kPa 内摩擦角φ/(°) 隧道原型实测值 19.86 46.20 0.30 56.60 23.20 相似理论计算值 19.86 0.924 0.30 1.132 23.20 相似模型试验值 19.23 0.910 0.30 0.990 22.10 表 5 相似模型试验工况设计
Table 5 Cases of similarity model tests
工况编号 砂层厚度 土层厚度 跨厚比 砂/土 探究因素 加载范围/kN 1 1D 1D 1∶1 1∶1 跨厚比 0~30 2 1/2D 1/2D 2∶1 1∶1 跨厚比/层厚比 0~30 3 1/3D 1/3D 3∶1 1∶1 跨厚比 0~30 4 2/7D 3/7D — 1∶1.5 层厚比 0~30 5 1/4D 1/2D — 1∶:2 层厚比 0~30 -
[1] MANDAL S K, SINGH M M. Evaluating extent and causes of overbreak in tunnels[J]. Tunnelling and Underground Space Technology, 2009, 24(1): 22-36. doi: 10.1016/j.tust.2008.01.007
[2] 汪成兵, 朱合华. 埋深对软弱隧道围岩破坏影响机制试验研究[J]. 岩石力学与工程学报, 2010, 29(12): 2442-2448. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012011.htm WANG Cheng-bing, ZHU He-hua. Experimental study of influence mechanism of buried depth on surrounding rock failure of tunnel constructed in soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2442-2448. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012011.htm
[3] 张成平, 韩凯航, 张顶立, 等. 城市软弱围岩隧道塌方特征及演化规律试验研究[J]. 岩石力学与工程学报, 2014, 33(12): 2433-2442. doi: 10.13722/j.cnki.jrme.2014.12.008 ZHANG Cheng-ping, HAN Kai-hang, ZHANG Ding-li, et al. Test study of collapse characteristics of tunnels in soft ground in urban areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2433-2442. (in Chinese) doi: 10.13722/j.cnki.jrme.2014.12.008
[4] 罗彦斌, 陈建勋, 王利宝, 等. 考虑层间黏聚力的水平层状围岩隧道顶板力学模型计算[J]. 中国公路学报, 2018, 31(10): 230-237, 265. doi: 10.3969/j.issn.1001-7372.2018.10.022 LUO Yan-bin, CHEN Jian-xun, WANG Li-bao, et al. Mechanical model calculations of tunnel roof with horizontal stratified rock mass tunneling considering the interlayer cohesion[J]. China Journal of Highway and Transport, 2018, 31(10): 230-237, 265. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.10.022
[5] LISJAK A, GARITTE B, GRASSELLI G, et al. The excavation of a circular tunnel in a bedded argillaceous rock (opalinus clay): short-term rock mass response and FDEM numerical analysis[J]. Tunnelling and Underground Space Technology, 2015, 45: 227-248. doi: 10.1016/j.tust.2014.09.014
[6] 陈子全, 何川, 吴迪, 等. 高地应力层状软岩隧道大变形预测分级研究[J]. 西南交通大学学报, 2018, 53(6): 1237-1244. doi: 10.3969/j.issn.0258-2724.2018.06.020 CHEN Zi-quan, HE Chuan, WU Di, et al. Study of large deformation classification criterion for layered soft rock tunnels under high geostress[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1237-1244. (in Chinese) doi: 10.3969/j.issn.0258-2724.2018.06.020
[7] 郭小龙, 谭忠盛, 李磊, 等. 高地应力陡倾层状软岩隧道变形破坏机理分析[J]. 土木工程学报, 2017, 50(增刊2): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2007.htm GUO Xiao-long, TAN Zhong-sheng LI Lei, et al. Deformation and failure mechanism of layered soft rock tunnel under high stress[J]. China Civil Engineering Journal, 2017, 50(S2): 38-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2007.htm
[8] 沙鹏, 伍法权, 李响, 等. 高地应力条件下层状地层隧道围岩挤压变形与支护受力特征[J]. 岩土力学, 2015, 36(5): 1407-1414. doi: 10.16285/j.rsm.2015.05.024 SHA Peng, WU Fa-quan, LI Xiang, et al. Squeezing deformation in layered surrounding rock and force characteristics of support system of a tunnel under high in-situ stress[J]. Rock and Soil Mechanics, 2015, 36(5): 1407-1414. (in Chinese) doi: 10.16285/j.rsm.2015.05.024
[9] 王志杰, 徐海岩, 唐力, 等. 层厚比对互层地层隧道围岩稳定性的影响探究[J]. 铁道工程学报, 2019, 36(3): 50-55. doi: 10.3969/j.issn.1006-2106.2019.03.009 WANG Zhi-jie, XU Hai-yan, TANG Li, et al. Research on the influence of thickness ratio on surrounding rock stability of tunnel in interbedded strata[J]. Journal of Railway Engineering Society, 2019, 36(3): 50-55. (in Chinese) doi: 10.3969/j.issn.1006-2106.2019.03.009
[10] 王志杰, 李振, 徐海岩, 等. 倾角对土砂互层地层围岩稳定性的影响探究[J]. 铁道工程学报, 2019, 36(9): 54-59, 84. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201909010.htm WANG Zhi-jie, LI Zhen, XU Hai-yan, et al. Research on the influence of dip angle on stability of surrounding rock in sand and soil interbedded strata[J]. Journal of Railway Engineering Society, 2019, 36(9): 54-59, 84.(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201909010.htm
[11] 胡善超. 深井巷道层状围岩变形破坏特征及机制研究[J]. 岩石力学与工程学报, 2015, 34(11): 2376. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511025.htm HU Shan-chao. Characteristics and mechanism of deformation and failure of layered surrounding rock mass in deep roadway[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2376. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511025.htm
[12] 胡雄玉, 杨清浩, 何川, 等. 层状围岩中管片衬砌受力特征的模型试验研究[J]. 岩土工程学报, 2018, 40(10): 1773-1781. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810004.htm HU Xiong-yu, YANG Qing-hao, HE Chuan, et al. Experimental study on behaviors of segment linings in an anisotropically jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1773-1781. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810004.htm
[13] 汪成兵, 朱合华. 隧道塌方机制及其影响因素离散元模拟[J]. 岩土工程学报, 2008, 30(3): 450-456. doi: 10.3321/j.issn:1000-4548.2008.03.025 WANG Cheng-bing, ZHU He-hua. Tunnel collapse mechanism and numerical analysis of its influencing factors[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 450-456. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.03.025
[14] 李晓红, 夏彬伟, 李丹, 等. 深埋隧道层状围岩变形特征分析[J]. 岩土力学, 2010, 31(4): 1163-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201004033.htm LI Xiao-hong, XIA Bin-wei, LI Dan, et al. Deformation characteristics analysis of layered rockmass in deep buried tunnel[J]. Rock and Soil Mechanics, 2010, 31(4): 1163-1167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201004033.htm
[15] 吴亮, 李凤, 卢文波, 等. 爆破扰动下邻近层状围岩隧道的稳定性与振速阈值[J]. 爆炸与冲击, 2017, 37(2): 208-214. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201702006.htm WU Liang, LI Feng, LU Wen-bo, et al. Vibration velocity threshold of a tunnel adjacent to surrounding layered rocks under blasting load[J]. Explosion and Shock Waves, 2017, 37(2): 208-214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201702006.htm
[16] LABIOUSE V, VIETOR T. Laboratory and in situ simulation tests of the excavation damaged zone around galleries in opalinus clay[J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 57-70.
[17] 夏彬伟, 胡科, 卢义玉, 等. 深埋隧道层状岩体破坏过程特征模型试验[J]. 中国公路学报, 2012, 25(1): 107-114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201201016.htm XIA Bin-wei, HU Ke, LU Yi-yu, et al. Model test for characteristics of failure process of layered rock mass in deep buried tunnel[J]. China Journal of Highway and Transport, 2012, 25(1): 107-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201201016.htm
[18] 周宗青, 李术才, 李利平, 等. 浅埋隧道塌方地质灾害成因及风险控制[J]. 岩土力学, 2013, 34(5): 1375-1382. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305022.htm ZHOU Zong-qing, LI Shu-cai, LI Li-ping, et al. Causes of geological hazards and risk control of collapse in shallow tunnels[J]. Rock and Soil Mechanics, 2013, 34(5): 1375-1382. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305022.htm
[19] 李术才, 许振浩, 黄鑫, 等. 隧道突水突泥致灾构造分类、地质判识、孕灾模式与典型案例分析[J]. 岩石力学与工程学报, 2018, 37(5): 1041-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201805001.htm LI Shu-cai, XU Zhen-hao, HUANG Xin, et al. Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5): 1041-1069. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201805001.htm
[20] WANG H, JIA Y, CAO L. Cause analysis and prevention of road tunnel collapse in complex soft strata[J]. Energy Procedia, 2012, 16: 259-264.
[21] TIAN H, CHEN W, YANG D, et al. Numerical analysis on the interaction of shotcrete liner with rock for yielding supports[J]. Tunnelling and Underground Space Technology, 2016, 54: 20-28.
[22] LIU Y N, LU J F. The solution on problem of soft soil layer’s collapse in xin kailing tunnel and evaluations on its effect[J]. Applied Mechanics and Materials. 2011(90/92/93): 2401-2407.
[23] 蒋涛. 隧道塌方特征分析和预报预警监测系统的研究[D]. 北京: 北京交通大学, 2016. JIANG Tao. Analysis of the Characteristics of Tunnel Collapse and Research on Forecasting and Earlying Warning-Monitoring System[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
[24] 曹文贵, 翟友成, 王江营, 等. 山岭隧道塌方风险的集对分析方法[J]. 中国公路学报, 2012, 25(2): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201202013.htm CAO Wen-gui, ZHAI You-cheng, WANG Jiang-ying, et al. Method of set pair analysis for collapse risk during construction of mountain tunnel[J]. China Journal of Highway and Transport, 2012, 25(2): 90-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201202013.htm
[25] 王迎超. 山岭隧道塌方机制及防灾方法[J]. 岩石力学与工程学报, 2011, 30(11): 2376. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201111027.htm WANG Ying-chao. Collapse mechanism and preventive measures of mountain tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2376. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201111027.htm
[26] 王迎超, 尚岳全, 靖洪文, 等. 隧道塌方段施工方案优化及效果评价[J]. 岩土力学, 2011, 32(增刊2): 514-520. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2085.htm WANG Ying-chao, SHANG Yue-quan, JING Hong-wen, et al. Optimization of construction scheme of tunnel collapse and treatment effect[J]. Rock and Soil Mechanics, 2011, 32(S2): 514-520. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2085.htm
[27] 谢雄耀, 牛俊涛, 杨国伟, 等. 重叠隧道盾构施工对先建隧道影响模型试验研究[J]. 岩石力学与工程学报, 2013, 32(10): 2061-2069. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310016.htm XIE Xiong-yao, NIU Jun-tao, YANG Guo-wei, et al. Model test for effects of construction of shield tunnelling in overlapping tunnels on existing tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10): 2061-2069. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310016.htm