• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土砂互层隧道塌方及演变规律的模型试验研究

徐海岩, 王志杰, 陈昌健, 蔡李斌, 李振, 邓宇航, 夏勇

徐海岩, 王志杰, 陈昌健, 蔡李斌, 李振, 邓宇航, 夏勇. 土砂互层隧道塌方及演变规律的模型试验研究[J]. 岩土工程学报, 2021, 43(6): 1050-1058. DOI: 10.11779/CJGE202106008
引用本文: 徐海岩, 王志杰, 陈昌健, 蔡李斌, 李振, 邓宇航, 夏勇. 土砂互层隧道塌方及演变规律的模型试验研究[J]. 岩土工程学报, 2021, 43(6): 1050-1058. DOI: 10.11779/CJGE202106008
XU Hai-yan, WANG Zhi-jie, CHEN Chang-jian, CAI Li-bin, LI Zhen, DENG Yu-hang, XIA Yong. Model tests on characteristics and evolution of tunnel collapse in soil-sand interbedded strata[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1050-1058. DOI: 10.11779/CJGE202106008
Citation: XU Hai-yan, WANG Zhi-jie, CHEN Chang-jian, CAI Li-bin, LI Zhen, DENG Yu-hang, XIA Yong. Model tests on characteristics and evolution of tunnel collapse in soil-sand interbedded strata[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1050-1058. DOI: 10.11779/CJGE202106008

土砂互层隧道塌方及演变规律的模型试验研究  English Version

基金项目: 

国家自然科学基金委员会高铁联合基金项目 U1934213

详细信息
    作者简介:

    徐海岩(1994—),男,博士,主要从事特殊复杂地层隧道围岩稳定及适应性控制技术研究。E-mail: haiyanXU@my.swjtu.edu.cn

    通讯作者:

    王志杰, E-mail: zhjWang@home.swjtu.edu.cn

  • 中图分类号: U45

Model tests on characteristics and evolution of tunnel collapse in soil-sand interbedded strata

  • 摘要: 塌方作为软弱地层隧道施工建设的一个重大安全风险,在层状地层隧道建设中尤其值得格外关注。隧道塌方的预防和管控得益于其表现及演变规律的全面掌控。以第四系土砂互层地层隧道为研究对象,通过相似模型试验并结合数字图像处理技术,首次研究得出土砂互层地层隧道塌方特征及演变规律。结果表明:①围岩破坏非瞬间破坏、而呈渐进性破坏,破坏始于拱脚处围岩裂隙发育并向上扩展、拱脚处围岩产生局部掉块,接着拱顶上方围岩小范围塌落,裂隙扩展和失稳塌落循序渐进,拱顶上方围岩大范围塌落,最终使得拱顶上方围岩不断离层破坏。②土砂互层地层隧道拱顶上方围岩破坏表现为“层内围岩剪切破坏,层间围岩离层弯曲破坏”的塌方特征,互层特性对塌方影响显著,跨厚比越大、砂土比越大,塌方破坏越显著。③塌方对拱顶上方围岩沉降主要影响范围为1倍隧道跨度,隧道施工建设中应加强上述范围内围岩加固。所得结果能够为土砂互层地层隧道施工建设过程中的塌方防控提供借鉴。
    Abstract: As a major safety risk in the construction of tunnels in soft strata, collapse deserves special attention in the construction of tunnels in layered strata. In order to prevent and control tunnel collapse, it is necessary to fully grasp the characteristics and evolution law of collapse. A tunnel in the Quaternary soil-sand interbedded strata is taken as the research object. By using model tests and digital image processing technology, the collapse characteristics and evolution laws of the tunnel in soil-sand interbedded strata are studied for the first time. The results show that: (1) The failure of the surrounding rock is not instantaneous, but gradual. It starts from the cracks in the surrounding rock at the foot of the arch and expands upward, and local falling of the surrounding rock is induced. Then the surrounding rock above the vault of the arch collapses in a small range, the crack expansion and instability occur step by step, and the surrounding rock above the vault of the arch collapses in a large range and eventually breaks away from the stratum contineously. (2) The collapse of the surrounding rock above the vault of the arch of the tunnel in the soil-sand interbedded stratum is characterized by "shear failure of the surrounding rock in the stratum and bending failure of the surrounding rock in the interbedded stratum". The interbedded characteristics have a significant influence on the collapse. The larger the ratio of span to depth and the larger the ratio of sand to soil, the more obvious the collapse failure. (3) The main influence range of the collapse on the settlement of the surrounding rock above the vault of the arch is 1 times the tunnel span, and the reinforcement of the surrounding rock should be strengthened in the above area during tunnel construction. The results may provide reference for the prevention and control of the collapse in the process of the tunnel construction in soil-sand interbedded strata.
  • 全球性的气候问题与突发自然灾害使得岩土及地下工程灾变问题不断凸现,给岩土工程安全与运营构成巨大挑战。岩土体作为地球表面最为广泛存在的地质材料具有复杂的物理力学特性与显著的时空变异性。岩土工程物理模拟试验技术通过融合多学科知识模拟和再现岩土体在自然与工程状态下的物理力学行为,为复杂岩土工程问题的解决提供强力支撑。“交通强国”等重大国家战略的实施也给岩土工程带来了巨大的历史机遇。岩土工程防灾减灾问题由于其普遍性、迫切性和前沿性也成为岩土及地下工程领域研究的新热点。随着科技的进步,岩土工程物理模拟试验技术也正从传统的重力场模拟、离心试验,向数字与智能化转变,而世界级超大型试验设备的建设,更将极大驱动我国岩土工程物理模拟试验技术的未来发展。

    为促进我国岩土工程物理模拟试验技术学术交流,由中国水利学会岩土力学专业委员会和中国土木工程学会土力学及岩土工程分会共同主办,交通运输部天津水运工程科学研究院、南京水利科学研究院、中交天津港湾工程研究院有限公司以及天津大学承办的第十届岩土工程物理模拟学术研讨会于2024年8月在天津市滨海新区举行。本届会议是继武汉(2011年)、杭州(2013)、北京(2017)、喀什(2023)会议后全国岩土工程物理模拟试验技术领域的又一次学术盛会。会议筹备期间共收到投稿论文113篇,经过审稿委员会的审议向《岩土工程学报》(增刊)推荐稿件51篇,并在学报2024年增刊1专刊出版。同时,本届研讨会举办了砂土场地桩基水平承载力平行试验,并以特邀报告、主题报告、青年学者报告等在内的形式开展广泛深入的交流,展现最新模拟技术和研究成果,探讨岩土工程物理模拟试验技术在交通强国基础设施建设与防灾减灾研究中的应用,以促进岩土工程物理模拟试验技术对我国重大战略和重大工程的技术支撑作用。

    感谢对本届会议召开鼎力相助的交通运输部天津水运工程科学研究院及各有关单位,感谢向本届会议投稿的各位专家和同行,感谢审稿专家对本次会议审稿工作的辛勤付出。尤其是《岩土工程学报》编辑部,为使本届会议的论文集面世,做了大量工作,专门编辑出版了本期增刊,特此表示感谢。

    第十届全国岩土工程物理模拟学术研讨会组委会

  • 图  1   浩吉铁路阳城隧道

    Figure  1.   Yangcheng Tunnel of Haolebaoji-Ji'an Railway

    图  2   隧道围岩失稳破坏及相应施工措施

    Figure  2.   Instability and failure of surrounding rock and corresponding construction measures

    图  3   砂层及土层围岩形貌

    Figure  3.   Morphology of sand and soil of rock mass

    图  4   砂层及土层围岩基本物理力学试验

    Figure  4.   Basic physical and mechanical tests on rock mass

    图  5   模型试验系统设计图

    Figure  5.   Design of model test system

    图  6   隧道围岩位移测点布设示意图

    Figure  6.   Layout of measuring points for displacement of rock mass

    图  7   隧道开挖相似模型试验关键流程图(部分)

    Figure  7.   Part of key flow chart of similarity model tests on excavation of tunnel

    图  8   相似模型试验工况设计

    Figure  8.   Cases of similarity model tests

    图  9   隧道围岩渐进性破坏过程(以试验工况2为例)

    Figure  9.   Progressive failure process of surrounding rock of tunnel (Case 2)

    图  10   不同互层特性下隧道塌落的最终稳定状态

    Figure  10.   Final stable state of tunnel collapse under different interbedding characteristics

    图  11   隧道围岩竖直方向全场位移云图

    Figure  11.   Cloud chart of vertical displacement of surrounding rock of tunnel

    图  12   拱顶上方围岩沉降变化规律(试验工况2)

    Figure  12.   Change of settlement of surrounding rock above vault of arch (Case 2)

    图  13   跨厚比对拱顶上方围岩沉降的影响规律

    Figure  13.   Influences of ratio of span to depth on settlement of surrounding rock above vault of arch crown

    图  14   层厚比对拱顶上方围岩沉降的影响规律

    Figure  14.   Influences of layer thickness ratio on settlement of surrounding rock above vault of arch

    表  1   隧道支护参数

    Table  1   Supporting parameters of tunnel

    围岩级别及衬砌类型初期支护二次衬砌
    C25喷射混凝土格栅钢架拱墙仰拱
    围岩级别衬砌类型部位厚度/cm部位型号/间距厚度/cm厚度/cm
    VI全环37全环H300@0.5 m6060
    下载: 导出CSV

    表  2   相似模型试验参数相似比设计

    Table  2   Similarity ratio design of model test parameters

    参数几何重度应变内摩擦角泊松比弹性模量黏聚力应力位移
    相似比50111150505050
    下载: 导出CSV

    表  3   砂层围岩物理力学参数设计

    Table  3   Design of physical and mechanical parameters of surrounding rock of sand

    砂层围岩重度/(kN·m-3)弹性模量/MPa泊松比黏聚力/kPa内摩擦角φ/(°)
    隧道原型实测值20.5020.5300.2516.58028.76
    相似理论计算值20.500.4110.250.33228.76
    相似模型试验值19.680.4080.230.30129.50
    下载: 导出CSV

    表  4   土层围岩物理力学参数设计

    Table  4   Design of physical and mechanical parameters of surrounding rock of soil

    土层围岩重度/(kN·m-3)弹性模量/MPa泊松比黏聚力/kPa内摩擦角φ/(°)
    隧道原型实测值19.8646.200.3056.6023.20
    相似理论计算值19.860.9240.301.13223.20
    相似模型试验值19.230.9100.300.99022.10
    下载: 导出CSV

    表  5   相似模型试验工况设计

    Table  5   Cases of similarity model tests

    工况编号砂层厚度土层厚度跨厚比砂/土探究因素加载范围/kN
    11D1D1∶11∶1跨厚比0~30
    21/2D1/2D2∶11∶1跨厚比/层厚比0~30
    31/3D1/3D3∶11∶1跨厚比0~30
    42/7D3/7D1∶1.5层厚比0~30
    51/4D1/2D1∶:2层厚比0~30
    下载: 导出CSV
  • [1]

    MANDAL S K, SINGH M M. Evaluating extent and causes of overbreak in tunnels[J]. Tunnelling and Underground Space Technology, 2009, 24(1): 22-36. doi: 10.1016/j.tust.2008.01.007

    [2] 汪成兵, 朱合华. 埋深对软弱隧道围岩破坏影响机制试验研究[J]. 岩石力学与工程学报, 2010, 29(12): 2442-2448. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012011.htm

    WANG Cheng-bing, ZHU He-hua. Experimental study of influence mechanism of buried depth on surrounding rock failure of tunnel constructed in soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2442-2448. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012011.htm

    [3] 张成平, 韩凯航, 张顶立, 等. 城市软弱围岩隧道塌方特征及演化规律试验研究[J]. 岩石力学与工程学报, 2014, 33(12): 2433-2442. doi: 10.13722/j.cnki.jrme.2014.12.008

    ZHANG Cheng-ping, HAN Kai-hang, ZHANG Ding-li, et al. Test study of collapse characteristics of tunnels in soft ground in urban areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2433-2442. (in Chinese) doi: 10.13722/j.cnki.jrme.2014.12.008

    [4] 罗彦斌, 陈建勋, 王利宝, 等. 考虑层间黏聚力的水平层状围岩隧道顶板力学模型计算[J]. 中国公路学报, 2018, 31(10): 230-237, 265. doi: 10.3969/j.issn.1001-7372.2018.10.022

    LUO Yan-bin, CHEN Jian-xun, WANG Li-bao, et al. Mechanical model calculations of tunnel roof with horizontal stratified rock mass tunneling considering the interlayer cohesion[J]. China Journal of Highway and Transport, 2018, 31(10): 230-237, 265. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.10.022

    [5]

    LISJAK A, GARITTE B, GRASSELLI G, et al. The excavation of a circular tunnel in a bedded argillaceous rock (opalinus clay): short-term rock mass response and FDEM numerical analysis[J]. Tunnelling and Underground Space Technology, 2015, 45: 227-248. doi: 10.1016/j.tust.2014.09.014

    [6] 陈子全, 何川, 吴迪, 等. 高地应力层状软岩隧道大变形预测分级研究[J]. 西南交通大学学报, 2018, 53(6): 1237-1244. doi: 10.3969/j.issn.0258-2724.2018.06.020

    CHEN Zi-quan, HE Chuan, WU Di, et al. Study of large deformation classification criterion for layered soft rock tunnels under high geostress[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1237-1244. (in Chinese) doi: 10.3969/j.issn.0258-2724.2018.06.020

    [7] 郭小龙, 谭忠盛, 李磊, 等. 高地应力陡倾层状软岩隧道变形破坏机理分析[J]. 土木工程学报, 2017, 50(增刊2): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2007.htm

    GUO Xiao-long, TAN Zhong-sheng LI Lei, et al. Deformation and failure mechanism of layered soft rock tunnel under high stress[J]. China Civil Engineering Journal, 2017, 50(S2): 38-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2007.htm

    [8] 沙鹏, 伍法权, 李响, 等. 高地应力条件下层状地层隧道围岩挤压变形与支护受力特征[J]. 岩土力学, 2015, 36(5): 1407-1414. doi: 10.16285/j.rsm.2015.05.024

    SHA Peng, WU Fa-quan, LI Xiang, et al. Squeezing deformation in layered surrounding rock and force characteristics of support system of a tunnel under high in-situ stress[J]. Rock and Soil Mechanics, 2015, 36(5): 1407-1414. (in Chinese) doi: 10.16285/j.rsm.2015.05.024

    [9] 王志杰, 徐海岩, 唐力, 等. 层厚比对互层地层隧道围岩稳定性的影响探究[J]. 铁道工程学报, 2019, 36(3): 50-55. doi: 10.3969/j.issn.1006-2106.2019.03.009

    WANG Zhi-jie, XU Hai-yan, TANG Li, et al. Research on the influence of thickness ratio on surrounding rock stability of tunnel in interbedded strata[J]. Journal of Railway Engineering Society, 2019, 36(3): 50-55. (in Chinese) doi: 10.3969/j.issn.1006-2106.2019.03.009

    [10] 王志杰, 李振, 徐海岩, 等. 倾角对土砂互层地层围岩稳定性的影响探究[J]. 铁道工程学报, 2019, 36(9): 54-59, 84. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201909010.htm

    WANG Zhi-jie, LI Zhen, XU Hai-yan, et al. Research on the influence of dip angle on stability of surrounding rock in sand and soil interbedded strata[J]. Journal of Railway Engineering Society, 2019, 36(9): 54-59, 84.(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201909010.htm

    [11] 胡善超. 深井巷道层状围岩变形破坏特征及机制研究[J]. 岩石力学与工程学报, 2015, 34(11): 2376. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511025.htm

    HU Shan-chao. Characteristics and mechanism of deformation and failure of layered surrounding rock mass in deep roadway[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2376. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511025.htm

    [12] 胡雄玉, 杨清浩, 何川, 等. 层状围岩中管片衬砌受力特征的模型试验研究[J]. 岩土工程学报, 2018, 40(10): 1773-1781. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810004.htm

    HU Xiong-yu, YANG Qing-hao, HE Chuan, et al. Experimental study on behaviors of segment linings in an anisotropically jointed rock mass[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1773-1781. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810004.htm

    [13] 汪成兵, 朱合华. 隧道塌方机制及其影响因素离散元模拟[J]. 岩土工程学报, 2008, 30(3): 450-456. doi: 10.3321/j.issn:1000-4548.2008.03.025

    WANG Cheng-bing, ZHU He-hua. Tunnel collapse mechanism and numerical analysis of its influencing factors[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 450-456. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.03.025

    [14] 李晓红, 夏彬伟, 李丹, 等. 深埋隧道层状围岩变形特征分析[J]. 岩土力学, 2010, 31(4): 1163-1167. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201004033.htm

    LI Xiao-hong, XIA Bin-wei, LI Dan, et al. Deformation characteristics analysis of layered rockmass in deep buried tunnel[J]. Rock and Soil Mechanics, 2010, 31(4): 1163-1167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201004033.htm

    [15] 吴亮, 李凤, 卢文波, 等. 爆破扰动下邻近层状围岩隧道的稳定性与振速阈值[J]. 爆炸与冲击, 2017, 37(2): 208-214. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201702006.htm

    WU Liang, LI Feng, LU Wen-bo, et al. Vibration velocity threshold of a tunnel adjacent to surrounding layered rocks under blasting load[J]. Explosion and Shock Waves, 2017, 37(2): 208-214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201702006.htm

    [16]

    LABIOUSE V, VIETOR T. Laboratory and in situ simulation tests of the excavation damaged zone around galleries in opalinus clay[J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 57-70.

    [17] 夏彬伟, 胡科, 卢义玉, 等. 深埋隧道层状岩体破坏过程特征模型试验[J]. 中国公路学报, 2012, 25(1): 107-114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201201016.htm

    XIA Bin-wei, HU Ke, LU Yi-yu, et al. Model test for characteristics of failure process of layered rock mass in deep buried tunnel[J]. China Journal of Highway and Transport, 2012, 25(1): 107-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201201016.htm

    [18] 周宗青, 李术才, 李利平, 等. 浅埋隧道塌方地质灾害成因及风险控制[J]. 岩土力学, 2013, 34(5): 1375-1382. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305022.htm

    ZHOU Zong-qing, LI Shu-cai, LI Li-ping, et al. Causes of geological hazards and risk control of collapse in shallow tunnels[J]. Rock and Soil Mechanics, 2013, 34(5): 1375-1382. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305022.htm

    [19] 李术才, 许振浩, 黄鑫, 等. 隧道突水突泥致灾构造分类、地质判识、孕灾模式与典型案例分析[J]. 岩石力学与工程学报, 2018, 37(5): 1041-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201805001.htm

    LI Shu-cai, XU Zhen-hao, HUANG Xin, et al. Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5): 1041-1069. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201805001.htm

    [20]

    WANG H, JIA Y, CAO L. Cause analysis and prevention of road tunnel collapse in complex soft strata[J]. Energy Procedia, 2012, 16: 259-264.

    [21]

    TIAN H, CHEN W, YANG D, et al. Numerical analysis on the interaction of shotcrete liner with rock for yielding supports[J]. Tunnelling and Underground Space Technology, 2016, 54: 20-28.

    [22]

    LIU Y N, LU J F. The solution on problem of soft soil layer’s collapse in xin kailing tunnel and evaluations on its effect[J]. Applied Mechanics and Materials. 2011(90/92/93): 2401-2407.

    [23] 蒋涛. 隧道塌方特征分析和预报预警监测系统的研究[D]. 北京: 北京交通大学, 2016.

    JIANG Tao. Analysis of the Characteristics of Tunnel Collapse and Research on Forecasting and Earlying Warning-Monitoring System[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)

    [24] 曹文贵, 翟友成, 王江营, 等. 山岭隧道塌方风险的集对分析方法[J]. 中国公路学报, 2012, 25(2): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201202013.htm

    CAO Wen-gui, ZHAI You-cheng, WANG Jiang-ying, et al. Method of set pair analysis for collapse risk during construction of mountain tunnel[J]. China Journal of Highway and Transport, 2012, 25(2): 90-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201202013.htm

    [25] 王迎超. 山岭隧道塌方机制及防灾方法[J]. 岩石力学与工程学报, 2011, 30(11): 2376. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201111027.htm

    WANG Ying-chao. Collapse mechanism and preventive measures of mountain tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2376. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201111027.htm

    [26] 王迎超, 尚岳全, 靖洪文, 等. 隧道塌方段施工方案优化及效果评价[J]. 岩土力学, 2011, 32(增刊2): 514-520. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2085.htm

    WANG Ying-chao, SHANG Yue-quan, JING Hong-wen, et al. Optimization of construction scheme of tunnel collapse and treatment effect[J]. Rock and Soil Mechanics, 2011, 32(S2): 514-520. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2085.htm

    [27] 谢雄耀, 牛俊涛, 杨国伟, 等. 重叠隧道盾构施工对先建隧道影响模型试验研究[J]. 岩石力学与工程学报, 2013, 32(10): 2061-2069. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310016.htm

    XIE Xiong-yao, NIU Jun-tao, YANG Guo-wei, et al. Model test for effects of construction of shield tunnelling in overlapping tunnels on existing tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10): 2061-2069. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310016.htm

图(14)  /  表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-05
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-05-31

目录

    /

    返回文章
    返回