Time-dependent mechanical behavior of tunnel linings under sulfate attack
-
摘要: 隧道钢筋混凝土衬砌在硫酸盐侵蚀作用下将发生化学–力学耦合作用,导致其力学性能退化,其退化规律受多方面因素的影响。为了揭示硫酸盐地层中的隧道衬砌在多因素耦合作用下的宏观力学性能退化时变规律,提出了一种硫酸盐侵蚀混凝土的化学–力学全过程分析模型。模型以改进后的硫酸根离子扩散–反应方程组为基础,结合荷载对混凝土孔隙率的影响规律和荷载–钙矾石生长共同作用下的体应变变化规律,计算了混凝土的无量纲损伤参数,以此建立了硫酸盐侵蚀作用下的钢筋混凝土衬砌承载力演变模型,并用试验数据对提出的模型进行了验证。研究结果表明,硫酸盐侵蚀将显著降低钢筋混凝土衬砌的承载能力,受侵蚀的衬砌更容易发生大偏心破坏。该研究成果构建了硫酸根离子扩散–反应过程与隧道衬砌宏观力学性能演化之间的桥梁关系,可以为硫酸盐地层隧道结构的耐久性评估提供参考。Abstract: The chemical-mechanical coupling effect of tunnel lining concrete under sulfate attack will lead to the degradation of its mechanical properties, and the degradation law is affected by many factors. A chemical–mechanical coupling method for accurately evaluating the time-dependent mechanical behavior of tunnel linings under sulfate attack is proposed. The improved diffusion-reaction equations for sulfate ions are obtained on the basis of the diffusion–reaction approach in combination with the mechanism of volume expansion under a sulfate attack and the influence of load on the concrete voidage. The constitutive response and damage parameters of concrete are calculated according to the volumetric strain caused by the external load and ettringite growth. Then, the evolution model for the bearing capacity of reinforced concrete linings under sulfate attack is established. A case study is conducted to analyze the degradation laws of strength of concrete and bearing capacity of linings obtained using the proposed method. The results demonstrate that the sulfate corrosion will significantly reduce the bearing capacity of the reinforced concrete linings, and the eroded lining is more prone to large eccentric damage. The proposed method serves as a reference for evaluating the durability of an underground structure in a sulfate formation.
-
Keywords:
- sulfate attack /
- tunnel lining /
- damage /
- coupling
-
-
-
[1] 雷明锋, 彭立敏, 施成华. 硫酸盐侵蚀环境下隧道结构力学性能演化规律试验研究[J]. 土木工程学报, 2013, 46(1): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201301015.htm LEI Mi-feng, PENG Li-min, SHI Cheng-hua. Experimental study on evolution law of mechanical properties of tunnel structure suffering ambient sulfate[J]. China Civil Engineering Journal, 2013, 46(1): 126-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201301015.htm
[2] 刘鑫, 刘伟庆, 王曙光, 等. 混凝土硫酸盐侵蚀理论模型的研究现状及展望[J]. 材料导报, 2014, 28(13): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201413021.htm LIU Xin, LIU Wei-qing, WANG Shu-guang, et al. Recent development on theoretical models of sulfate attack on concrete[J]. Materials Review, 2014, 28(13): 89-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201413021.htm
[3] 周凤玺, 王立业, 赖远明. 饱和盐渍土的一维蠕变试验与模型研究[J]. 岩土工程学报, 2020, 42(1): 142-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001023.htm ZHOU Feng-xi, WANG Li-ye, LAI Yuan-ming. One- dimensional creep tests and model studies on saturated saline soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 142-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001023.htm
[4] 姚明博, 李镜培. 水压作用下硫酸盐在混凝土桩中的侵蚀分布规律[J]. 同济大学学报(自然科学版), 2019, 47(8): 1131-1136. doi: 10.11908/j.issn.0253-374x.2019.08.007 YAO Ming-bo, LI Jing-pei. Distribution behavior of sulfate erosion in concrete piles under water pressure[J]. Journal of Tongji University(Natural Science), 2019, 47(8): 1131-1136. (in Chinese) doi: 10.11908/j.issn.0253-374x.2019.08.007
[5] 牛荻涛, 王家滨, 马蕊. 干湿交替喷射混凝土硫酸盐侵蚀试验[J]. 中国公路学报, 2016, 29(2): 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201602011.htm NIU Di-tao, WANG Jia-bin, MA Rui. Sulfate attack test of shotcrete under dry-wet alternation[J]. China Journal of Highway and Transport, 2016, 29(2): 82-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201602011.htm
[6] 逯静洲, 刘亚, 朱孔峰, 等. 混凝土经历荷载历史后在硫酸盐干湿交替作用下损伤试验研究[J]. 混凝土, 2017(2): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201702010.htm LU Jing-zhou, LIU Ya, ZHU Kong-feng, et al. Damage behaviors of concrete due to sulfate attack in wet-dry cycle environment after experiencing historical load[J]. Concrete, 2017(2): 37-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201702010.htm
[7] STAWISKI B, KANIA T. Examining the distribution of strength across the thickness of reinforced concrete elements subject to sulphate corrosion using the ultrasonic method[J]. Materials, 2019, 12(16): 2519.
[8] IKUMI T, CAVALARO S H P, SEGURA I, et al. Alternative methodology to consider damage and expansions in external sulfate attack modeling[J]. Cement & Concrete Research, 2014, 63: 105-116.
[9] IKUMI T, SEGURA I. Numerical assessment of external sulfate attack in concrete structures: a review[J]. Cement and Concrete Research, 2019, 121: 91-105.
[10] ZUO X B, SUN W, YU C. Numerical investigation on expansive volume strain in concrete subjected to sulfate attack[J]. Construction & Building Materials, 2012, 36: 404-410.
[11] ZUO X B, WANG J L, SUN W, et al. Numerical investigation on gypsum and ettringite formation in cement pastes subjected to sulfate attack[J]. Computers and Concrete, 2017, 19(1): 19-31.
[12] ISLAM M A, GOLROKH A J, LU Y. Chemomechanical modeling of sulfate attack-induced damage process in cement-stabilized pavements[J]. Journal of Engineering Mechanics, 2019, 145: 1-11.
[13] 高润东. 复杂环境下混凝土硫酸盐侵蚀微-宏观劣化规律研究[D]. 北京: 清华大学, 2010. GAO Run-dong. Micro-macro Degradation Regularity of Sulfate Attack on Concrete Under Complex Environments[D]. Beijing: Tsinghua University, 2010. (in Chinese)
[14] SARKAR S, MAHADEVAN S, MEEUSSEN J C L, et al. Numerical simulation of cementitious materials degradation under external sulfate attack[J]. Cement and Concrete Composites, 2010, 32(3): 241-252.
[15] 赵羽习, 王传坤, 金伟良, 等. 混凝土表面氯离子浓度时变规律试验研究[J]. 土木建筑与环境工程, 2010, 32(3): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201003003.htm ZHAO Yu-xi, WANG Chuan-kun, JIN Wei-liang, et al. Experimental analysis on time-dependent law of surface chloride on concentration of concrete[J]. Journal of Civil, Architectural & Environmental Engineering, 2010, 32(3): 8-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201003003.htm
[16] 金浏, 杜修力. 孔隙率变化规律及其对混凝土变形过程的影响[J]. 工程力学, 2013(6): 191-198. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201306029.htm JIN Liu, DU iu-li. Variation of porosity and its effect on the deformation process of concrete[J]. Engineering Mechanics, 2013(6): 191-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201306029.htm
[17] GAO R, LI Q, ZHAO S, et al. Deterioration mechanisms of sulfate attack on concrete under alternate action[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2010, 25(2): 355-359.
[18] 贾金青, 胡玉龙, 王东来, 等. 混凝土抗压强度与孔隙率关系的研究[J]. 混凝土, 2015(10): 56-59, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201510017.htm JIA Jin-qing, HU Yu-long, WANG Dong-lai, et al. Effects of porosity on the compressive strength of concrete[J]. Concrete, 2015(10): 56-59, 63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201510017.htm
[19] 杜健民, 梁咏宁, 张风杰. 地下结构混凝土硫酸盐腐蚀机理及性能退化[M]. 北京: 中国铁道出版社, 2011. DU Jian-min, LIANG Yong-ning, ZHANG Feng-jie. Sulfate Corrosion Mechanism and Performance Degradation of Underground Structure Concrete[M]. Beijing: China Railway Publishing House, 2011. (in Chinese)
[20] 公路隧道设计规范 第一册 土建工程:JTG 3370.1—2018[S]. 2018. Specifications for Design of Highway Tunnels Section Ⅰ Civil Engineering: JTG 3370.1—2018[S]. 2018. (in Chinese)
-
期刊类型引用(8)
1. 杨旭辉,柏谦,贾鹏蛟. 地铁车站小直径管幕-横梁支护参数优化分析. 沈阳工业大学学报. 2025(01): 114-123 . 百度学术
2. 邱建,赵文,路博,孙旭. 新型管幕工法修建地铁车站地层变形特性及参数优化. 东北大学学报(自然科学版). 2024(11): 1645-1655 . 百度学术
3. 崔光耀,宋博涵,何继华,田宇航. 超近接上跨既有隧道施工影响分区及加固措施效果. 长江科学院院报. 2023(06): 114-118+125 . 百度学术
4. 伍凯,毕延哲,杨鑫,储修琼. 超浅覆土小净距上跨运营线路盾构掘进超前管幕支护模拟分析. 路基工程. 2023(04): 130-136 . 百度学术
5. 陈凯. 基于变形控制的密排管幕顶管施工顺序优化分析. 铁道勘察. 2023(05): 149-157 . 百度学术
6. 王子君,赵文,程诚,柏谦. 地铁车站小直径管幕工法开挖变形规律. 东北大学学报(自然科学版). 2022(11): 1630-1637 . 百度学术
7. 袁庆利. 大直径密排管幕的力学分析及在地铁车站中的应用. 吉林水利. 2021(06): 1-10 . 百度学术
8. 张贺. 新型钢管幕力学变形特征及其在地铁车站中的应用. 工程建设. 2021(09): 1-6 . 百度学术
其他类型引用(3)