刚性与柔性桩承式路堤竖向承载特性分析

    张乾青, 李振宝, 马彬, 李亮亮, 李庶安, 吴建群

    张乾青, 李振宝, 马彬, 李亮亮, 李庶安, 吴建群. 刚性与柔性桩承式路堤竖向承载特性分析[J]. 岩土工程学报, 2021, 43(6): 991-999. DOI: 10.11779/CJGE202106002
    引用本文: 张乾青, 李振宝, 马彬, 李亮亮, 李庶安, 吴建群. 刚性与柔性桩承式路堤竖向承载特性分析[J]. 岩土工程学报, 2021, 43(6): 991-999. DOI: 10.11779/CJGE202106002
    ZHANG Qian-qing, LI Zhen-bao, MA Bin, LI Liang-liang, LI Shu-an, WU Jian-qun. Vertical bearing behavior of rigid and flexible piles in pile-supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 991-999. DOI: 10.11779/CJGE202106002
    Citation: ZHANG Qian-qing, LI Zhen-bao, MA Bin, LI Liang-liang, LI Shu-an, WU Jian-qun. Vertical bearing behavior of rigid and flexible piles in pile-supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 991-999. DOI: 10.11779/CJGE202106002

    刚性与柔性桩承式路堤竖向承载特性分析  English Version

    基金项目: 

    国家自然科学基金项目 51778345

    山东省自然科学杰出青年基金项目 JQ201811

    山东省重点研发计划项目 2019GSF109006

    山东大学齐鲁青年学者项目 

    山东省泰山学者青年专家项目 tsqn202103163

    详细信息
      作者简介:

      张乾青(1983—),男,教授,博士,博士生导师,主要从事桩基工程与基坑工程等方面的教学和科研工作。E-mail: zjuzqq@163.com

    • 中图分类号: TU47

    Vertical bearing behavior of rigid and flexible piles in pile-supported embankment

    • 摘要: 基于软弱地基高速公路桩承式路堤现场试验,获得了预应力高强混凝土管桩和高压旋喷桩承载特性随时间的变化规律。现场试验与数值模拟结果对比分析验证了有限元模型界面单元和本构模型选取的有效性。采用有限元数值模拟软件分析了预应力高强混凝土管桩在不同阶段的承载特性,研究了桩长、桩径和面积置换率对桩承式路堤性能的影响,获得了桩承式路堤中刚性桩的设计优化参数。数值计算结果表明,桩帽可显著提高桩体承载力,且桩帽尺寸与桩间距比值对路堤沉降有显著影响,其比值为0.67~0.74时路堤沉降可得到有效控制。
      Abstract: The field tests on the pile-supported embankment of an express way in soft soil area are performed to capture the performance of pre-stressed high-strength concrete pipe piles and high-pressure jet grouting piles with time. The rationality of the selection of interface element and constitutive model used in the finite element numerical simulation software is verified according to the comparison between simulated and field test results. The bearing behavior of the pre-stressed high-strength concrete pipe piles under different construction stages is then analyzed by using the finite element numerical simulation software, and a parametric study is made to assess the influences of pile length, pile diameter and area replacement ratio on the performances of the pile-supported embankment. The optimization parameters of the rigid piles in the pile-supported embankment are obtained. The numerical results show that the bearing capacity of piles can be increased due to the loads shared by the pile cap. The ratio of pile cap size to pile spacing has a significant impact on the embankment settlement, and the embankment settlement can be effectively controlled when the ratio is 0.67 to 0.74.
    • 图  1   现场土层物理性质

      Figure  1.   Physical properties of in-situ soil

      图  2   路堤填土施工顺序

      Figure  2.   Construction sequence of embankment fill

      图  3   监测元件布设

      Figure  3.   Layout of monitoring instruments

      图  4   单点沉降仪原理图

      Figure  4.   Schematic diagram of single point settlement instrument

      图  5   实测竖向应力–时间曲线

      Figure  5.   Measured vertical stress-time curves

      图  6   桩土应力比随时间变化

      Figure  6.   Variation of pile-soil stress ratio with time

      图  7   实测桩土沉降

      Figure  7.   Measured settlements of pile and soil

      图  8   路堤模型示意图

      Figure  8.   Numerical model of embankment

      图  9   桩土沉降的计算值和实测值

      Figure  9.   Calculated and measured settlements of piles and soil

      图  10   桩土竖向应力的计算值和实测值

      Figure  10.   Calculated and measured vertical stress of piles and soil

      图  11   桩承载力随时间变化

      Figure  11.   Variation of bearing capacity of piles with time

      图  12   桩承载力分布情况

      Figure  12.   Distribution of bearing capacity of piles

      图  13   PHC管桩的面积置换率

      Figure  13.   Area replacement rate of PHC pile

      图  14   桩土沉降影响因素分析

      Figure  14.   Analysis on influence factors of pile-soil settlement

      图  15   面积置换率和桩长对沉降的DOI

      Figure  15.   DOI of area replacement and pile length on settlement

      表  1   数值模拟中土体参数

      Table  1   Parameters of soils used in numerical simulation

      材料模型γ/(kN·m-3)E/MPaμ c/kPaφ/(°)ψ/(°)e0Mλ e1κk /(10-4m·d-1)
      填土MC19.5200.3015300 
      碎石MC25.0250.3010250 
      黏土MCC17.50.351.1  0.5911.10.1420.850.0205.2
      黏土MCC19.00.321.1  0.6271.10.1420.850.0154.8
      黏土MCC20.00.321.2  0.6521.20.1500.880.024.5
      PHCE25.0400000.15         
      JGCE28.0300000.20         
      注:γ为重度,E为杨氏模量,μ为泊松比,c为黏聚力,ψ为内摩擦角,φ为膨胀角,e0为初始孔隙比,M为临界状态应力比,λ为压缩指数,e1为单位压力下土体孔隙比,κ为回弹指数,k为渗透系数。
      下载: 导出CSV
    • [1]

      HAN J, GABR M A. Numerical analysis of geosynthetic- reinforced and pilesupported earth platforms over soft soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(1): 44-53. doi: 10.1061/(ASCE)1090-0241(2002)128:1(44)

      [2]

      BORGES J L, Oliveira . Geosynthetic-reinforced and jet grout column-supported embankments on soft soils: Numerical analysis and parametric study[J]. Computers and Geotechnics, 2011, 38(7): 883-896. doi: 10.1016/j.compgeo.2011.06.003

      [3]

      WU L D, JIANG J L, JU N P. Behavior and numerical evaluation of cement-fly ash-gravel pile-supported embankments over completely decomposed granite soils[J]. International Journal of Geomechanics, 2019, 19(6): 04019048. doi: 10.1061/(ASCE)GM.1943-5622.0001430

      [4] 蒋建清, 曹国辉, 刘热强. 排水板和砂井联合堆载预压加固海相软土地基的工作性状的现场试验[J]. 岩土力学, 2015, 36(增刊2): 551-558. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2078.htm

      JIANG Jian-qing, CAO Guo-hui, LIU Re-qiang. Field test on behaviours of marine soft soil foundation treated with plastic drainage plate and sand column combined with surcharge preloading[J]. Rock and Soil Mechanics, 2015, 36(S2): 551-558. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2078.htm

      [5]

      SHEN S L, CHAI J C, HONG Z S, et al. Analysis of field performance of embankments on soft clay deposit with and without PVD-improvement[J]. Geotextiles and Geomembranes, 2005, 23(6): 463-485. doi: 10.1016/j.geotexmem.2005.05.002

      [6]

      BORGES J L, CARDOSO A S. Structural behavior and parametric study of reinforced embankments on soft clays[J]. Computers and Geotechnics, 2001, 28(3): 209-233. doi: 10.1016/S0266-352X(00)00021-5

      [7]

      HUGHES J M O, WITHERS N J, GREENWOOD D A. Field trial reinforcement effect of a stone column in soil[J]. Geotechnique, 1975, 25(1): 31-44. doi: 10.1680/geot.1975.25.1.31

      [8]

      RAMPELLO S, CALLISTO L. Predicted and observed performance of oil tank founded on soil-cement columns in clay soils[J]. Soils and Foundations, 2003, 43(4): 229-241. doi: 10.3208/sandf.43.4_229

      [9]

      WU L D, JIANG J L, JU N P. Behavior and numerical evaluation of cement-fly ash-gravel pile-supported embankments over completely decomposed granite soils[J]. International Journal of Geomechanics, 2019, 19(6): 04019048. doi: 10.1061/(ASCE)GM.1943-5622.0001430

      [10]

      LIU H L, NG Charles W W, FEI K. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: case study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(12): 1483-1493. doi: 10.1061/(ASCE)1090-0241(2007)133:12(1483)

      [11]

      REID W M, BUCHANAN N W. Bridge Approach Support Pilling. Pilling and Ground Treatment[D]. London: Thomas Telford Ltd, 1984: 267-274.

      [12]

      LIN K Q, WONG I H. Use of deep cement mixing to reduce settlements at bridge approaches[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(4): 309-320. doi: 10.1061/(ASCE)1090-0241(1999)125:4(309)

      [13] 陈福全, 李阿池. 桩承式加筋路堤的改进设计方法研究[J]. 岩土工程学报, 2007, 29(12): 1804-1808. doi: 10.3321/j.issn:1000-4548.2007.12.010

      CHEN Fu-quan, LI A-chi. Improved design method of geosynthetic reinforced pile supported embankments on soft soils[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1804-1808. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.12.010

      [14]

      TERZAGHI K. Theoretical Soil Mechanics[M]. New York: Wiley, 1943.

      [15]

      LIU S Y, DU Y G, YI Y L, et al. Field investigations on performance of T-shaped deep mixed soil cement column-supported embankments over soft ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(6): 718-727. doi: 10.1061/(ASCE)GT.1943-5606.0000625

      [16] 郑俊杰, 曹文昭, 董同新, 等. 中低压缩性土地区桩承式加筋路堤现场试验研究[J]. 岩土工程学报, 2015, 37(9): 1549-1555. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509002.htm

      ZHENG Jun-jie, CAO Wen-zhao, DONG Tong-xin, et al. Experimental investigation of geogrid reinforced and pile-supported embankment on soils with medium-low compressibility[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1549-1555. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509002.htm

      [17]

      CHEN Y M, CAO W P, CHEN R P. An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments[J]. Geotextiles and Geomembranes, 2008, 26(2): 164-174. doi: 10.1016/j.geotexmem.2007.05.004

      [18]

      VAN Eekelen S J, BEZUIJEN M A, VAN Tol A F. An analytical model for arching in piled embankments[J]. Geotextiles and Geomembranes, 2013, 39: 78-102. doi: 10.1016/j.geotexmem.2013.07.005

      [19]

      VAN Eekelen S J, BEZUIJEN M A, VAN Tol A F. Validation of analytic models for the design of basal reinforced piled embankment[J]. Geotextiles and Geomembranes, 2015, 43(1): 56-81. doi: 10.1016/j.geotexmem.2014.10.002

      [20]

      RUI R, HAN J, ZHANG L, et al. Simplified method for estimating vertical stress-settlement responses of piled embankments on soft soils[J]. Computers and Geotechnics, 2020, 119: 103365. doi: 10.1016/j.compgeo.2019.103365

      [21] 芮瑞, 夏元友. 桩-网复合地基与桩承式路堤的对比数值模拟[J]. 岩土工程学报, 2007, 29(5): 769-772. doi: 10.3321/j.issn:1000-4548.2007.05.023

      RUI Rui, XIA Yuan-you. Numerical simulation and comparison of pile-net composite foundation with pile-supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 769-772. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.05.023

      [22]

      OH Y I, SHIN E C. Reinforcement and arching effect of geogrid-reinforced and pile-supported embankment on marine soft ground[J]. Marine Georesources and Geotechnology, 2007, 25(2): 97-118. doi: 10.1080/10641190701359591

      [23]

      ABUSHARAR S W, ZHENG J J, CHEN B G, et al. A simplified method for analysis of a piled embankment reinforced with geosynthetics[J]. Geotextiles and Geomembranes, 2009, 27(1): 39-52. doi: 10.1016/j.geotexmem.2008.05.002

      [24]

      ZHOU M, LIU H L, CHEN Y M, et al. First application of cast-in-place concrete large-diameter pipe(PCC) pile reinforced railway foundation: a field study[J]. Canadian Geotechnical Journal, 2015, 53(4): 708-716.

      [25]

      CHEN R P, XU Z Z, CHEN Y M, et al. Field tests on pile-supported embankments over soft ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6): 777-785. doi: 10.1061/(ASCE)GT.1943-5606.0000295

      [26] 俞缙, 周亦涛, 鲍胜, 等. 柔性桩承式加筋路堤桩土应力比分析[J]. 岩土工程学报, 2011, 33(5): 705-713. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105010.htm

      YU Jin, ZHOU Yi-tao, BAO Sheng, et al. Pile-soil stress ratio of deformable pile-supported and geosynthetics-reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 705-713. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105010.htm

      [27]

      BHASI A, RAJAGOPAL K. Numerical study of basal reinforced embankments supported on floating/end bearing piles considering pile-soil interaction[J]. Geotextiles and Geomembranes, 2015, 43(6): 524-536. doi: 10.1016/j.geotexmem.2015.05.003

      [28]

      ROWE R K, LIU K W. Three-dimensional finite element modelling of a full-scale geosynthetic-reinforced, pile- supported embankment[J]. Canadian Geotechnical Journal, 2015, 52(12): 2041-2054. doi: 10.1139/cgj-2014-0506

      [29]

      BOURGEOIS E, BUHAN P de, HASSEN G. Settlement analysis of piled-raft foundations by means of a multiphase model accounting for soil-pile interactions[J]. Computers and Geotechnics, 2012, 46: 26-38. doi: 10.1016/j.compgeo.2012.05.015

      [30]

      LENG J, GABR M A. Numerical analysis of stress-deformation response in reinforced unpaved road sections[J]. Geosynthetics International, 2005, 12(2): 111-119. doi: 10.1680/gein.2005.12.2.111

      [31]

      LEE C J, BOLTON M D, AL-TABBAA A. Numerical modeling of group effects on the distribution of drag loads in pile foundations[J]. Géotechnique, 2002, 52(5): 325-335. doi: 10.1680/geot.2002.52.5.325

      [32]

      HUANG J, HAN J. Two-dimensional parametric study of geosynthetic-reinforced column-supported embankments by coupled hydraulic and mechanical modeling[J]. Computers and Geotechnics, 2010, 37(5): 638-648.

    • 期刊类型引用(4)

      1. 马鹏程,刘润,李国和,苏伟,施威,蒋成强. 成层土中长桩竖向承载激发规律研究. 河北工程大学学报(自然科学版). 2024(02): 23-29 . 百度学术
      2. 付有为,贺佐跃. 基于附加应力法的刚性桩复合地基沉降影响参数分析. 科技和产业. 2024(14): 186-191 . 百度学术
      3. 刘浩,高泉平,李纪昕,李良昊,张颖,丁锐恒,芮瑞. 深厚软土层端承摩擦桩桩承式加筋低路堤现场试验. 土木工程与管理学报. 2023(06): 60-69 . 百度学术
      4. 姚云龙,李积泉,刘鑫,徐奋强,洪宝宁. 基于相似理论的复合地基弹性垫层模型试验研究. 公路工程. 2023(06): 84-93 . 百度学术

      其他类型引用(8)

    图(15)  /  表(1)
    计量
    • 文章访问数:  298
    • HTML全文浏览量:  29
    • PDF下载量:  212
    • 被引次数: 12
    出版历程
    • 收稿日期:  2020-09-11
    • 网络出版日期:  2022-12-02
    • 刊出日期:  2021-05-31

    目录

      /

      返回文章
      返回