• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于双分形级配模型参数的粗粒土渗透系数计算公式

曲诗章, 刘晓明, 黎莉, 陈仁朋

曲诗章, 刘晓明, 黎莉, 陈仁朋. 基于双分形级配模型参数的粗粒土渗透系数计算公式[J]. 岩土工程学报, 2023, 45(1): 144-152. DOI: 10.11779/CJGE20210543
引用本文: 曲诗章, 刘晓明, 黎莉, 陈仁朋. 基于双分形级配模型参数的粗粒土渗透系数计算公式[J]. 岩土工程学报, 2023, 45(1): 144-152. DOI: 10.11779/CJGE20210543
QU Shizhang, LIU Xiaoming, LI Li, CHEN Renpeng. Formula for permeability coefficient of coarse-grained soil based on parameters of two-dimensional fractal gradation model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 144-152. DOI: 10.11779/CJGE20210543
Citation: QU Shizhang, LIU Xiaoming, LI Li, CHEN Renpeng. Formula for permeability coefficient of coarse-grained soil based on parameters of two-dimensional fractal gradation model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 144-152. DOI: 10.11779/CJGE20210543

基于双分形级配模型参数的粗粒土渗透系数计算公式  English Version

基金项目: 

国家重点研发计划项目 2019YFC1904705

详细信息
    作者简介:

    曲诗章(1992—),男,博士研究生,主要从事地基基础和岩土基本性质等方面的研究工作。E-mail: qsz.cxdl@hnu.edu.cn

    通讯作者:

    黎莉, E-mail: lilicivil@hnu.edu.cn

  • 中图分类号: TU441

Formula for permeability coefficient of coarse-grained soil based on parameters of two-dimensional fractal gradation model

  • 摘要: 粗粒土在自然界中分布广泛且在工程中应用普遍。渗透性是粗粒土的重要性质,对于同种粗粒土,因颗粒级配与孔隙特征几乎决定其渗透性,原则上其渗透系数应该可基于颗粒级配和孔隙特征参量计算得到。采用基于分形理论建立的双分形级配模型对粗粒土的连续级配、间断级配进行定量描述,以确定该级配模型的适用性并获得级配模型参数。在此基础上,基于双分形级配模型参数和Kozeny-Carman公式构造出包含级配参量及孔隙率的渗透系数计算公式。在论述了计算公式中各项物理意义后,基于现有文献的实测数据验证该计算公式的有效性。结果表明,双分形级配模型能准确唯一地定量描述粗粒土的颗粒级配;建立的含颗粒级配参量和孔隙率的粗粒土渗透系数计算公式是合理的,该公式适用于计算连续和间断级配粗粒土的渗透系数。
    Abstract: The coarse-grained soil is widely distributed in nature and used in engineering. The permeability is one of its key properties, and for the same type of coarse-grained soil, its permeability is almost determined by the grain-size distribution and the pore characteristics. In principle, its permeability coefficient can be calculated based on the grain-size distribution and the pore characteristic parameters. The two-dimensional fractal gradation model based on the fractal theory is used to quantitatively describe the continuous gradation and gap gradation of the coarse-grained soil so as to determine the applicability of the gradation model and obtain its parameters. Then, based on the parameters of the two-dimensional fractal gradation model and the Kozeny-Carman formula, a formula for calculating the permeability coefficient including grain-size distribution parameters and the porosity is established. After discussing the physical meaning of each item in the formula, the validation of the formula is verified by using the measured data in the existing researches. The results show that the two-dimensional gradation model can accurately and uniquely describe the grain size distribution of the coarse-grained soil. The established formula for calculating the permeability coefficient of the coarse-grained soil including grain-size distribution parameters and the porosity is reasonable, and it is suitable for calculating the permeability coefficient of continuously graded and gap-graded coarse-grained soil.
  • 随着中国交通行业的不断发展,中国桥梁建设水平得到大幅提升,对桥梁跨越能力的要求也不断增长,悬索桥作为所有桥型中跨越能力最大的桥型,越来越成为跨越大江、大河的主要解决方案。但是随着悬索桥跨度的不断增加,锚碇规模急剧扩大,造成锚碇建设成本过高。因此研究锚碇沉井基础的受力变形特性对于悬索桥的锚碇优化设计显得尤为重要。

    Alampalli[1]在1994年研究了沉井在承受竖向和水平向荷载时的结构响应;李永盛[2]和李家平等[3]分别在1995年和2005年通过模型试验探讨了沉井基础的变形机制和破坏失稳形式;穆保岗等[4]在2017年通过模型试验研究了水平荷载长期作用下沉井变位的特性;Liu等[5]在2019年通过模型试验结合数值模拟分析研究了重力式锚碇的稳定性。

    本文首先进行了在分级水平荷载下的沉井在砂箱中的模型试验,然后基于PLAXIS 3D软件建立了有限元模型,并分析了沉井的位移及沉井前侧和沉井底部的土压力,研究了水平荷载条件下沉井的受力变形规律。

    本文依托南京仙新路大桥北锚碇沉井工程,沉井长度为70 m,宽度为50 m,高度为49.5 m。该工程地基土以粉砂和中砂为主。

    本试验采用的模型槽平面尺寸为4.0 m×2.0 m,高1.0 m。地基土采用中砂,其相对密度为2.68,最大孔隙比0.881,最小孔隙比0.463,不均匀系数3.89,曲率系数0.92。模型试验分层填筑地基土,控制每层填土的厚度为0.1 m,最终得到地基土的干密度为1.55 g/cm3,含水率0.63%,相对密实度为59.61%,内摩擦角为34.5°(快剪)。

    沉井模型平面尺寸为0.7 m×0.5 m,高0.495 m,由厚度为22 mm的钢板焊接而成,试验过程将沉井看成刚体,不考虑沉井自身的变形,为模拟沉井与土体相互作用的界面,通过在沉井表面黏2~3 mm的砂粒实现[6],如图1所示。

    图  1  沉井界面的处理
    Figure  1.  Surface treatment for cassion

    模型试验中设计荷载为62kg,本文中水平荷载分级施加,每级荷载为设计荷载的~0.5倍,试验过程中每级荷载施加持续15 min直至土体破坏(土体破坏表现为沉井盖板处的位移急剧增大),沉井加载示意图如图2所示。

    图  2  沉井加载示意图
    Figure  2.  Schematic diagram of cassion under loading

    本研究建立的有限元模型完全基于模型试验,土体及沉井的单元形状均为四面体十节点实体单元,数值模型的网格如图3所示。

    图  3  有限元模型网格
    Figure  3.  Mesh of finite element model

    砂土的本构模型采用土体硬化(HS)模型,土层参数[7]取值见表1

    表  1  土层参数
    Table  1.  Soil parameters
    土层γ/(kN·m-3)eEs/MPaErefoed/MPaEref50/MPaErefur/MPacφ/(°)ψ/(°)m
    砂土15.60.72310.210.210.230.6034.500.5
    注:γ为砂土的重度;e为砂土的孔隙比;Es为砂土的压缩模量;Erefoed为砂土的主固结加载切线刚度;Eref50为砂土的标准三轴排水试验割线刚度;Erefur为砂土的卸载重加载刚度;c为砂土的有效黏聚力;φ为砂土的有效摩擦角;ψ为砂土的膨胀角;m为砂土的刚度应力水平相关幂值。
    下载: 导出CSV 
    | 显示表格

    在沉井盖板顶部设置3个位移测量点A、B、C。在位移测量点上放置位移靶标,采用TH-ISM-ST机器视觉测量仪对靶标位移进行测量,分辨率为0.01 mm,靶标布置如图4

    图  4  靶标布置图
    Figure  4.  Layout of targets

    模型试验和数值模拟的位移对比如图5所示,由图易知,模型试验和数值模拟的靶标位移较为一致,本文中取水平位移随设计荷载增加而不断增加的线弹性阶段为水平承载力极限值[4],即安全系数取值为4。

    图  5  模试验和数值模拟的位移对比
    Figure  5.  Comparison of displacements between model tests and numerical simulations

    在沉井前侧设置8个土压力盒,布置如图6所示,由于土压力盒对称分布,且沉井左右侧完全对称,因此取沉井左右两侧土压力盒平均值作为最终结果,结果如图7所示,其中模型试验中3号及3'号土压力盒数据较差,本文中已舍弃,余下的沉井前侧土压力盒数据和数值模拟结果较吻合。

    图  6  沉井前侧土压力盒布置图
    Figure  6.  Layout of earth pressure cells on front side of caisson
    图  7  模试验和数值模拟的沉井前侧土压力对比
    Figure  7.  Comparison of soil pressures on front side of caisson between model tests and numerical simulations

    在沉井底部设置12个土压力盒,布置如图8所示,同理,取沉井左右两侧土压力盒平均值作为最终结果,结果如图9所示,其中8号及8'号土压力盒数据较差,本文中已舍弃,余下的沉井底部土压力盒数据和数值模拟结果对比,发现当施加荷载/设计荷载的值小于等于4时较一致,当其值大于4之后,二者的结果相差较大。

    图  8  沉井底部土压力盒布置图
    Figure  8.  Layout of earth pressure cells on bottom of caisson
    图  9  模型试验和数值模拟的沉井前侧土压力对比
    Figure  9.  Comparison of soil pressures on bottom of the caisson between model tests and numerical simulations

    本文在已有的研究基础上,通过开展模型试验和数值模拟计算,得到水平荷载下沉井的受力变位特性,主要得出以下结论:

    (1)对锚碇沉井基础在砂土中的受力变位特性进行了试验研究和有限元分析,结果显示,水平荷载下锚碇沉井基础在砂土中的破坏模式为倾覆破坏,且安全系数远大于2,说明现阶段规范[8]中锚碇设计较为保守,有进一步的优化空间。

    (2)通过PLAXIS 3D软件建立了锚碇沉井基础的有限元模型,采用应变硬化的本构模型,结果表明模型试验的结果和有限元模型计算的结果较为一致,说明数值建模过程中的土体本构模型及参数取值可靠,表明PLAXIS 3D软件能够较好的模拟锚碇沉井在砂土中的受力变形行为。

    上述模型试验和有限元分析,只是针对水平荷载条件下锚碇沉井基础在砂土中的受力特性开展的研究,只考虑了单层干砂的地基土层,尚需更近一步探索。

  • 图  1   花岗岩级配碎石试验级配曲线及双分形模型拟合曲线

    Figure  1.   Fitting curves of granite-graded macadam by tests and two-dimensional fractal model

    图  2   渭河粗粒土试验级配曲线及双分形模型拟合曲线

    Figure  2.   Fitting curves of coarse-grained soil from Weihe River by tests and two-dimensional fractal model

    图  3   砂岩粗粒料试验级配曲线及双分形模型拟合曲线

    Figure  3.   Fitting curves of sandstone coarse-grained materials by tests and two-dimensional fractal model

    图  4   花岗岩级配碎石渗透系数实测值及计算值

    Figure  4.   Measured and calculated values of permeability coefficient of granite-graded macadam

    表  1   粗粒土双分形级配模型参数

    Table  1   Parameters of two-dimensional fractal gradation model for coarse-grained soil

    文献来源 级配编号 级配类型 D1 D2 RT1/mm RT2/mm MT1 MT2 R2
    文献[4] JP1 连续 2.592 1.912 45 3.0623 64.00 36.00 0.9971
    JP2 连续 2.588 2.528 45 9.1935 55.00 45.00 0.9972
    JP3 连续 2.564 2.580 45 10.3868 49.95 50.05 0.9980
    JP4 连续 2.500 2.000 45 3.9093 69.00 31.00 0.9983
    JP5 连续 2.512 2.472 45 8.1350 67.25 32.75 0.9966
    JP6 连续 2.616 2.204 45 7.1977 83.15 16.85 0.9969
    JP7 连续 2.400 2.024 45 4.9916 75.00 25.00 0.9996
    JP8 连续 2.400 2.224 45 4.4177 75.00 25.00 0.9991
    JP9 连续 2.396 2.416 45 3.9097 74.35 25.65 0.9981
    文献[5] TYU1 连续 1.904 2.328 20 1.4164 77.00 23.00 0.9962
    TYU2 连续 2.292 0.104 20 0.3199 90.00 10.00 0.9979
    TYU3 连续 2.404 1.284 20 0.6747 92.05 7.95 0.9969
    TYU4 连续 2.308 2.380 20 3.6713 71.15 28.85 0.9960
    TYU5 连续 2.300 2.380 20 6.2355 47.10 52.90 0.9964
    TYU6 连续 2.324 2.296 20 5.0453 41.85 58.15 0.9970
    TYU7 连续 2.404 1.924 20 2.6729 39.95 60.05 0.9981
    TYU8 连续 1.840 1.980 20 2.4032 20.00 80.00 0.9984
    TYU9 连续 2.544 0.848 20 1.1443 28.35 71.65 0.9979
    TYU10 连续 2.692 0.400 20 1.0331 17.00 83.00 0.9974
    文献[7] 1-3# 间断 2.600 1.584 60 24.5036 58.00 42.00 0.9927
    1-4# 间断 2.376 2.172 60 24.5033 43.50 56.50 0.9959
    1-7# 间断 2.616 1.704 60 18.9698 66.05 33.95 0.9915
    2-1# 间断 2.620 2.004 60 21.5590 65.00 35.00 0.9928
    2-2# 间断 1.500 2.608 60 27.8484 16.05 83.95 0.9824
    2-3# 间断 2.604 1.204 60 0.5987 76.00 24.00 0.9807
    下载: 导出CSV

    表  2   渭河粗粒土试样渗透系数实测值及计算值

    Table  2   Measured and calculated values of permeability coefficient of coarse-grained soil samples from Weihe River

    级配
    编号
    渗透系数k/
    (10-2cm·s-1)
    M(r<dc)MT/% 相对误差δ/%
    试验
    计算
    [5]
    式(10)计算值 δ[5] δ式(10)
    TYU1 6.70 9.50 6.64 31.54 41.79 0.90
    TYU2 4.50 7.90 4.71 31.74 75.56 4.67
    TYU3 2.80 2.66 35.79 5.00
    TYU4 2.40 5.20 2.48 41.54 116.67 3.33
    TYU5 2.30 4.10 2.31 42.97 78.26 0.43
    TYU6 2.10 3.00 1.86 48.13 42.86 11.43
    TYU7 1.90 2.20 1.74 72.13 15.79 8.42
    TYU8 1.00 1.50 1.35 81.95 50.00 35.00
    TYU9 0.96 1.07 83.01 11.46
    TYU10 0.88 0.77 92.16 12.50
    注:相对误差δ=|k计算值-k实测值|/k实测值×100%。
    下载: 导出CSV

    表  3   砂岩粗粒料的渗透系数实测值与计算值

    Table  3   Measured and calculated values of permeability coefficient of sandstone coarse-grained materials

    级配
    编号
    实测值 M(r<dc)MT/% 渗透系数计算值/(10-2 cm·s-1) 相对误差/%
    ρd/
    (g·cm-3)
    k/
    (10-2 cm·s-1)
    k式(11) kT kC k水科院 k杨志浩 δ式(11) δT δC δ水科院 δ杨志浩
    1-3# 1.89 84.10 32.27 84.14 4.15 37.12 149.84 8.78 0.05 95.07 55.86 78.17 89.56
    1-4# 1.91 60.71 32.10 60.39 20.45 143.42 138.75 15.62 0.53 66.32 136.24 128.55 74.27
    1-7# 1.89 6.17 38.95 5.32 2.51 25.65 31.71 6.09 13.78 59.32 315.72 413.94 1.30
    2-1# 1.91 7.14 40.80 8.56 1.67 18.21 22.20 4.90 19.89 76.61 155.04 210.92 31.37
    2-1# 1.82 8.76 40.80 9.22 2.54 27.93 30.93 6.73 5.25 71.00 218.84 253.08 23.17
    2-1# 1.74 10.64 40.80 10.04 3.50 39.91 40.39 8.79 5.64 67.11 275.09 279.61 17.39
    2-2# 1.91 0.79 50.08 0.75 0.90 8.80 0.89 2.32 5.06 13.92 1013.92 12.66 193.67
    2-2# 2.00 0.39 50.08 0.29 0.54 5.53 0.61 1.65 25.64 38.46 1317.95 56.41 323.08
    2-2# 1.79 1.17 50.08 1.69 1.55 15.47 1.37 3.53 44.44 32.48 1222.22 17.09 201.71
    2-3# 1.91 0.59 56.83 0.58 0.67 5.17 0.50 1.32 1.69 13.56 776.27 15.25 123.73
    2-3# 2.00 0.11 56.83 0.11 0.40 3.25 0.34 0.94 0 263.64 2854.55 209.09 754.55
    2-3# 1.81 0.90 56.83 1.33 1.06 8.30 0.72 1.87 47.78 17.78 822.22 20.00 107.78
    下载: 导出CSV
  • [1] 土工试验规程: SL237-1999[S]. 北京: 中国水利水电出版社, 1999.

    SL237-1999 Specification of Soil Test: SL237-1999[S]. Beijing: China Water & Power Press, 1999. (in Chinese)

    [2] 包孟碟, 朱俊高, 吴二鲁, 等. 基于级配方程的粗粒土渗透系数经验公式及其验证[J]. 岩土工程学报, 2020, 42(8): 1571-1576. doi: 10.11779/CJGE202008024

    BAO Mengdie, ZHU Jungao, WU Erlu, et al. Empirical formula for permeability coefficient of coarse grained soil based on gradation equation and its verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1571-1576. (in Chinese) doi: 10.11779/CJGE202008024

    [3] 郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1998.

    GUO Qingguo. Engineering characteristics and application of coarse-grained soil[M]. Zhengzhou: Yellow River Water Conservancy Press, 1998. (in Chinese)

    [4] 杨志浩, 岳祖润, 冯怀平, 等. 重载铁路基床表层级配碎石渗透特性试验研究[J]. 岩土力学, 2021, 42(1): 193-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101022.htm

    YANG Zhihao, YUE Zurun, FENG Huaiping, et al. Experimental study of permeability properties of graded macadam in heavy haul railway subgrade bed surface layer[J]. Rock and Soil Mechanics, 2021, 42(1): 193-202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101022.htm

    [5] 朱崇辉. 粗粒土的渗透特性研究[D]. 杨凌: 西北农林科技大学, 2006.

    ZHU Chonghui. Study on the Coarse-Grained Soil Permeability Characteristic[D]. Yangling: Northwest A & F University, 2006. (in Chinese)

    [6] 周中, 傅鹤林, 刘宝琛, 等. 土石混合体渗透性能的正交试验研究[J]. 岩土工程学报, 2006, 28(9): 1134-1138. http://cge.nhri.cn/cn/article/id/12168

    ZHOU Zhong, FU Helin, LIU Baochen, et al. Orthogonal tests on permeability of soil-rock-mixture[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1134-1138. (in Chinese) http://cge.nhri.cn/cn/article/id/12168

    [7] 刘黎. 粗粒料渗透特性及渗透规律试验研究[D]. 成都: 四川大学, 2006.

    LIU Li. Testing study on seepage property and seepage law of the coarse grain[D]. Chengdu: Sichuan University, 2006. (in Chinese)

    [8] 黄达, 曾彬, 王庆乐. 粗粒土孔隙比及级配参数与渗透系数概率的相关性研究[J]. 水利学报, 2015, 46(8): 900-907. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201508003.htm

    HUANG Da, ZENG Bin, WANG Qingle. Study on probabilistic relation between permeability coefficient and void ratio and grain composition of coarse grained soils using Copula theory[J]. Journal of Hydraulic Engineering, 2015, 46(8): 900-907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201508003.htm

    [9] 邵生俊, 李建军, 杨扶银. 粗粒土孔隙特征及其对泥浆渗透性的影响[J]. 岩土工程学报, 2009, 31(1): 59-65. doi: 10.3321/j.issn:1000-4548.2009.01.010

    SHAO Shengjun, LI Jianjun, YANG Fuyin. Pore characteristics of coarse grained soil and their effect on slurry permeability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 59-65. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.01.010

    [10]

    TERZAGHI K. Principles of soil mechanics: III. Determination of permeability of clay[J]. Engineering News Records, 1925, 95(21): 832–836.

    [11]

    SHAHABI A A, DAS B M, TARQUIN A J. An empirical relation for coefficient of permeability of sand[C]// Proceedings of the 4th Australia-New Zealand conference on geomechanics. Perth, 1984: 54–57.

    [12]

    CHAPUIS R P. Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio[J]. Canadian Geotechnical Journal, 2004, 41(5): 787-795.

    [13] 刘杰. 土的渗透稳定与渗流控制[M]. 北京: 水利电力出版社, 1992.

    LIU Jie. Seepage stability and seepage control of soil[M]. Beijing: Chinese Water Conservancy and Electric Power Press, 1992. (in Chinese)

    [14]

    TALBOT A, RICHART F E. The strength of concrete-its relation to the cement, aggregates and water[J]. Bulletin, Univ Illinois Eng Exp Station, 1923, 137: 1–118.

    [15]

    SWAMEE P K, OJHA C S P. Bed-load and suspended-load transport of nonuniform sediments[J]. Journal of Hydraulic Engineering, 1991, 117(6): 774-787.

    [16] 朱俊高, 郭万里, 王元龙, 等. 连续级配土的级配方程及其适用性研究[J]. 岩土工程学报, 2015, 37(10): 1931-1936. doi: 10.11779/CJGE201510023

    ZHU Jungao, GUO Wanli, WANG Yuanlong, et al. Equation for soil gradation curve and its applicability[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1931-1936. (in Chinese) doi: 10.11779/CJGE201510023

    [17] 于际都, 刘斯宏, 王涛, 等. 间断级配粗粒土压实特性试验研究[J]. 岩土工程学报, 2019, 41(11): 2142-2148. doi: 10.11779/CJGE201911021

    YU Jidu, LIU Sihong, WANG Tao, et al. Experimental research on compaction characteristics of gap-graded coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2142-2148. (in Chinese) doi: 10.11779/CJGE201911021

    [18]

    SHI X S, LIU K, YIN J H. Effect of initial density, particle shape, and confining stress on the critical state behavior of weathered gap-graded granular soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(2): 04020160.

    [19]

    MANDELBROT B B. Fractial: form, chance and dimension [M]. San Francisco: W H Freeman and Company, 1977.

    [20]

    TYLER S W, WHEATCRAFT S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369.

    [21] 谢和平. 分形几何及其在岩土力学中的应用[J]. 岩土工程学报, 1992, 14(1): 14-24. http://cge.nhri.cn/cn/article/id/9547

    XIE Heping. Fractal geometry and its application to rock and soil materials[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 14-24. (in Chinese) http://cge.nhri.cn/cn/article/id/9547

    [22] 王宝军, 施斌, 唐朝生. 基于GIS实现黏性土颗粒形态的三维分形研究[J]. 岩土工程学报, 2007, 29(2): 309-312. http://cge.nhri.cn/cn/article/id/12325

    WANG Baojun, SHI Bin, TANG Chaosheng. Study on 3D fractal dimension of clayey soil by use of GIS[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 309-312. (in Chinese) http://cge.nhri.cn/cn/article/id/12325

    [23] 徐永福. 考虑颗粒破碎影响的粗粒土的剪切强度理论[J]. 岩土工程学报, 2018, 40(7): 1171-1179. doi: 10.11779/CJGE201807002

    XU Yongfu. Theory of shear strength of granular materials based on particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1171-1179. (in Chinese) doi: 10.11779/CJGE201807002

    [24] 舒志乐, 刘新荣, 刘保县, 等. 土石混合体粒度分形特性及其与含石量和强度的关系[J]. 中南大学学报(自然科学版), 2010, 41(3): 1096-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201003048.htm

    SHU Zhile, LIU Xinrong, LIU Baoxian, et al. Granule fractal properties of earth-rock aggregate and relationship between its gravel content and strength[J]. Journal of Central South University (Science and Technology), 2010, 41(3): 1096-1101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201003048.htm

    [25]

    TAŞDEMIR A. Fractal evaluation of particle size distributions of chromites in different comminution environments[J]. Minerals Engineering, 2009, 22(2): 156-167.

    [26]

    LIU X M, QU S Z, CHEN R P, et al. Development of a two-dimensional fractal model for analyzing the particle size distribution of geomaterials[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018175.

    [27]

    KOZENY J. Üeber kapillare leitung des wassers im boden[J]. Akademie der Wissenechaften Wien, 1927, 136(2a): 271–306. (KOZENY J. Capillary line of water in soils[J]. Academy of Sciences, Vienna, 1927, 136(2a): 271–306. (in Germany))

    [28]

    CARMAN P C. Fluid flow through granular beds[J]. Chemical Engineering Research and Design, 1997, 75: 32-48.

    [29]

    CARRIER W D III. Goodbye, hazen; hello, kozeny-carman[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(11): 1054-1056.

    [30]

    TAYLOR D W. Fundamentals of soil mechanics[J]. Soil Science, 1948, 66(2): 161.

    [31]

    DOLZYK K, CHMIELEWSKA I. Predicting the coefficient of permeability of non-plastic soils[J]. Soil Mechanics and Foundation Engineering, 2014, 51(5): 213-218.

    [32] 苏立君, 张宜健, 王铁行. 不同粒径级砂土渗透特性试验研究[J]. 岩土力学, 2014, 35(5): 1289-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405011.htm

    SU Lijun, ZHANG Yijian, WANG Tiexing. Investigation on permeability of sands with different particle sizes[J]. Rock and Soil Mechanics, 2014, 35(5): 1289-1294. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405011.htm

图(4)  /  表(3)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  81
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 网络出版日期:  2023-02-03
  • 发布日期:  2021-05-13
  • 刊出日期:  2022-12-31

目录

/

返回文章
返回