• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

上覆海水层对自由场基本周期影响的离心模型试验研究

兰景岩, 宋锡俊, 王婷

兰景岩, 宋锡俊, 王婷. 上覆海水层对自由场基本周期影响的离心模型试验研究[J]. 岩土工程学报, 2021, 43(4): 768-775. DOI: 10.11779/CJGE202104020
引用本文: 兰景岩, 宋锡俊, 王婷. 上覆海水层对自由场基本周期影响的离心模型试验研究[J]. 岩土工程学报, 2021, 43(4): 768-775. DOI: 10.11779/CJGE202104020
LAN Jing-yan, SONG Xi-jun, WANG Ting. Centrifugal model tests on influences of overlying sea layer on basic period of free field[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 768-775. DOI: 10.11779/CJGE202104020
Citation: LAN Jing-yan, SONG Xi-jun, WANG Ting. Centrifugal model tests on influences of overlying sea layer on basic period of free field[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 768-775. DOI: 10.11779/CJGE202104020

上覆海水层对自由场基本周期影响的离心模型试验研究  English Version

基金项目: 

国家自然科学基金项目 51408559

广西自然科学基金项目 2018GXNSFAA281183

广西岩土力学与工程重点实验室开放基金项目 桂科能19-Y-21-4

详细信息
    作者简介:

    兰景岩(1981—),男,黑龙江齐齐哈尔人,博士,副研究员,硕士生导师,主要从事岩土工程、土动力学及地震工程等方面的教学与科研工作。E-mail: lanjy1999@163.com

  • 中图分类号: TU471

Centrifugal model tests on influences of overlying sea layer on basic period of free field

  • 摘要: 基于动态离心技术设计和构建了两组模型试验,还原并再现了上覆无水和有水的软土自由场仿真岩土台阵,利用白噪声扫频和强度不同的El Centro波作为振动台基底输入,采用考虑相消干涉的传统谱比法,获取了不同工况条件下的两组自由场模型的场地反应结果,通过对比分析有水和无水场地的振型反应特征以及基本周期差异,评价和总结上覆水在估算场地基本周期的作用及影响。研究结果表明:由于上覆水自重以及土水相互作用的影响,无水模型的地表峰值放大倍数要高于有水模型,同时无水模型的地表时程波形稀疏,表明地表地震波具有较为丰富的高频成分;无论是白噪声扫频还是El Centro波的基底加载方式,上覆无水和有水两组自由场模型的基本周期和振型放大系数均存在显著差异,表明上覆水对海底复杂介质体系的基本周期估算具有一定的影响,陆地模型和海域模型的基本周期最大偏差达35.5%。
    Abstract: Based on the dynamic centrifugation technique, two groups of model tests are designed and performed, and the geotechnical free field simulation arrays with and without water are restored and reproduced. The white noise sweep and El Centro waves with different intensities are used as the base input of the shaking table, and the traditional spectral ratio method considering cancellation interference is used to obtain the site response results of two groups of free field models under different working conditions. Through the comparative analysis of the modal response characteristics and basic period differences between watery and anhydrous sites, the function and influences of overlying water in estimating the basic period of the site are evaluated and summarized. The results show that due to the influences of the dead weight stress of overlying water, the surface peak magnification of the anhydrous model is higher than that of the watery model, and the surface time history waveform of the anhydrous model is sparse, indicating that the surface seismic waves have abundant high frequency components. Whether it is the white noise sweep or the base loading mode of El Centro wave, there are significant differences in the basic period and mode amplification factor of the two groups of free field models with and without water, indicating that the overlying water has a certain influence on the estimation of the basic period of the seafloor complex medium system, and the maximum deviation of the basic period of the land model and the sea model is 35.5%.
  • 本次离心机振动台试验得到了交通运输部天津水运工程科学研究院港口水工建筑技术国家工程实验室大力支持。感谢刘晓强博士、安晓宇博士、李建东工程师对本次试验付出了辛勤的工作和热情的支持。同时感谢匿名审稿人对本文提出了专业且富有建设性的修改意见。
  • 图  1   土工离心试验机与叠环式模型箱

    Figure  1.   Centrifugal testing machine and laminar model box

    图  2   动态离心机振动台试验设计模型图

    Figure  2.   Design models for dynamic centrifugal shake table tests

    图  3   EL-1工况加速度时程反应

    Figure  3.   Time-history responses of acceleration of EL-1 situation

    图  4   EL-2工况加速度时程反应

    Figure  4.   Time-history responses of acceleration of EL-2 situation

    图  5   EL-3工况加速度时程反应

    Figure  5.   Time-history responses of acceleration of EL-3 situation

    图  6   EL-4工况加速度时程反应

    Figure  6.   Time-history responses of acceleration of EL-4 situation

    图  7   EL-5工况加速度时程反应

    Figure  7.   Time-history responses of acceleration of EL-5 situation

    图  8   两组模型的地表加速度反应谱对比图

    Figure  8.   Comparison of ground acceleration response spectra of two models

    图  9   典型自由场地表处的场地反应放大谱

    Figure  9.   Site response amplification spectra at surface of typical free fields

    图  10   场地基本周期与放大系数随基底输入峰值的关系

    Figure  10.   Relationship among basic period, amplification factor and the peak value of base input

    表  1   模型土体的基本物理性质指标

    Table  1   Basic physical properties of model soil

    密度ρ/(g·m-3)含水率w/%塑限/%液限/%孔隙比e
    1.6136.026.048.01.170
    下载: 导出CSV

    表  2   典型自由场离心模型试验基底输入时程参数

    Table  2   Actual input ground motion parameters of free-field centrifugal model tests

    地震波类型工况幅值差异率/%持时/s
    无水/g有水/g
    白噪声扫频BZS5.6835.6910.1110
    El Centro波EL-146.1641.1310.960
    EL-281.4077.57 4.7
    EL-3146.80143.00 2.6
    EL-4250.20266.60 6.6
    EL-5395.30387.40 2.0
    下载: 导出CSV

    表  3   地表与基底峰值加速度量测结果及放大倍数

    Table  3   Peak accelerations and magnification of surface and basement

    模型工况无水模型有水模型
    基底PGA/g地表PGA/g放大倍数基底PGA/g地表PGA/g放大倍数
    EL-146.46125.52.7041.13130.03.16
    EL-281.40172.72.1277.57117.21.51
    EL-3146.8267.81.82143.096.940.68
    EL-4250.2249.30.99266.6141.30.53
    EL-5395.3251.80.64387.4204.00.53
    下载: 导出CSV

    表  4   模型体系动力特性

    Table  4   Dynamic characteristics of model system

    加载工况无水模型有水模型
    fd/HzTb/sfd/HzTb/s
    白噪声扫频BZS0.6821.470.8191.22
    下载: 导出CSV

    表  5   地震动振型放大系数及其相应的自振频率

    Table  5   Amplification factors and their corresponding natural frequencies of ground motion modes

    加载工况无水模型有水模型
    fd/HzAFfd/HzAF
    EL-10.330*6.6710.3525.583
    EL-20.4883.9320.3153.365
    EL-30.4033.4920.2772.155
    EL-40.3172.5960.2420.848
    EL-50.3122.3180.480*0.466
    注:*表示试验非正常点。
    下载: 导出CSV

    表  6   不同工况条件下两组离心模型的基本周期Tb及差异率δ

    Table  6   Basic periods and difference rates of two groups of centrifugal models under different working conditions

    模型工况无水模型Tb/s有水模型Tb/s差异率δ/%
    EL-13.032.84-6.7
    EL-22.053.1735.5
    EL-32.483.5630.3
    EL-43.154.1323.7
    EL-53.212.08-35.2
    下载: 导出CSV
  • [1] 李小军. 地震动参数区划图场地条件影响调整[J]. 岩土工程学报, 2013, 35(增刊2): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2005.htm

    LI Xiao-jun. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 21-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2005.htm

    [2] 华永超, 齐文浩, 薄景山, 等. 场地周期的确定方法综述[J]. 地震工程与工程振动, 2020, 40(2): 239-251. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202002025.htm

    HUA Yong-chao, QI Wen-hao, BO Jing-shan et al. Review of methods for determining site period[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(2): 239-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202002025.htm

    [3]

    ZHAO J X, ZHANG J, AKIHIRO A. Attenuation relations of strong ground motion in Japan using site classification based on predominant period[J]. Bulletin of Seismological Society of America, 2006, 96(3): 898-913. doi: 10.1785/0120050122

    [4] 陈永新, 迟明杰, 李小军. 基于强震动记录确定的场地卓越周期[J]. 地震学报, 2016, 38(1): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201601014.htm

    CHEN Yong-xin, CHI Ming-jie, LI Xiao-jun. Determination of site dominant period based on strong motion records[J]. Acta Seismological Sinica, 2016, 38(1): 138-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201601014.htm

    [5]

    CHAVEZ-GARCIA F J, SANCHEZ L R, HATZFELD D. Topographic site effects and HVSR. A comparison between observations and theory[J]. Bulletin of the Seismological Society of America, 1996, 86(5): 1559-1573.

    [6]

    RONG M, FU L, WANG Z, LI X, et al. On the amplitude discrepancy of HVSR and site amplification from strong- motion observations[J]. Bulletin of the Seismological Society of America, 2017, 107(6): 2873-2884. doi: 10.1785/0120170118

    [7]

    NAKAMURA Y. A Method for dynamic characteristics estimations of subsurface using microtremors on the ground surface[J]. Quarterly Report of Railway Technical Research Institute of Japanese National Railways, 1989, 30(1): 25-33.

    [8] 高广运, 吴世明, 周健, 等. 场地卓越周期的讨论与测定[J]. 工程勘察, 2000, 2(5): 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200005010.htm

    GAO Guang-yun, WU Shi-ming, ZHOU Jian, et al. Discussion and measurement of site predominant period[J]. Geotechnical Investigation & Surveying, 2000, 2(5): 29-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200005010.htm

    [9]

    DOBRY R, OWEIS I, URZUR A. Simplified procedures for estimation the fundamental period of a soil profile[J]. Bulletin of the Seismological Society of America, 1976, 66(4): 1293-1321.

    [10] 《工程地质手册》编委会. 工程地质手册[M]. 5版. 北京: 中国建筑工业出版社, 2006.

    Editorial Board of Engineering Geology Manual. Engineering Geology Manual[M]. 5th ed. Beijing: China Building Industry Press, 2006. (in Chinese)

    [11] 齐文浩, 薄景山, 刘红帅. 水平成层场地基本周期的估算公式[J]. 岩土工程学报, 2013, 35(4): 779-784. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304027.htm

    QI Wen-hao, BO Jing-shan, LIU Hong-shuai. Fundamental period formula for horizontal layered soil profiles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 779-784. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304027.htm

    [12]

    YANG J. Saturation effects on horizontal and vertical motions in a layered soil-bedrock system due to inclined SV waves[J]. Soil Dynamics and Earthquake Engineering 2001, 21(6): 527-536.

    [13]

    WANG S, HAO H. Effects of random variations of soil properties on site amplification of seismic ground motions[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(7): 551-64.

    [14]

    ZHANG D Y, XIE W C, PANDEY M D. Synthesis of spatially correlated ground motions at varying sites based on vector-valued seismic hazard deaggregation[J]. Soil Dynamics and Earthquake Engineering, 2012, 41: 1-13.

    [15] 荣棉水, 喻烟, 王继鑫. 基于强震观测的海域和陆域场地效应的对比研究[J]. 建筑结构, 2018, 48(增刊2): 345-349. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2018S2070.htm

    RONG Mian-shui, YU Tian, WANG Ji-xin. Comparative study on site-effects of sea and land area based on strong earthquake observation[J]. Building Structure, 2018, 48(S2): 345-349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2018S2070.htm

    [16]

    FAN S, SHI Y, LIU C, et al. Simulation of spatially varying seafloor ground motions with random seawater layer and complex terrain[J]. Soil Dynamics and Earthquake Engineering, 2018, 111: 110-118.

    [17] 张奎, 赵成刚, 李伟华. 海底软土层对海洋地基场地动力响应的影响[J]. 岩土力学, 2019, 40(6): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906046.htm

    ZHANG Kui, ZHAO Cheng-gang, LI Wei-hua. Study on the seismic response of the seafloor ground with seafloor soft soil[J]. Rock and Soil Mechanics, 2019, 40(6): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906046.htm

    [18] 刘晶波, 刘祥庆, 王宗刚. 离心机振动台试验叠环式模型箱边界效应[J]. 北京工业大学学报, 2008, 34(9): 931-937. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200809009.htm

    LIU Jing-bo, LIU Xiang-qing, WANG Zong-gang. Boundary effect of laminar model box for shaking table tests on geotechnical centrifuge system[J]. Journal of Beijing University of Technology, 2008, 34(9): 931-937. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200809009.htm

    [19]

    LEE C J, WEI Y C, KUO Y C. Boundary effects of a laminar container in centrifuge shaking table tests[J]. Soil Dynamic and Earthquake Engineering, 2012, 34: 37-51.

    [20]

    Building Seismic Safety Council. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures[S]. 2020.

    [21] 许成顺, 豆鹏飞, 杜修力, 等. 液化场地—群桩基础—结构体系动力响应分析——大型振动台模型试验研究[J]. 岩土工程学报, 2019, 41(12): 2173-2181. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912004.htm

    XU Cheng-shun, DOU Peng-fei, DU Xiu-li, et al. Dynamic response analysis of liquefied site-pile ground foundation-structure system—large scale shaking table mdel test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2173-181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912004.htm

    [22]

    BOORE D M. Simulation of ground motion using the stochastic method[J]. Pure and Applied Geophysics, 2003, 160(3/4): 635-676.

    [23]

    BORCHERDT R D. Effect of local geology on ground motion near San Francisco Bay[J]. Bulletin of the Seismological Society of America, 1970, 60(1): 29-61.

    [24] 大琦顺彦. 地震动的谱分析入门[M]. 田琪,译. 北京: 地震出版社, 2008: 171-174.

    Yorihiko OSAKI. Shin Jishindo No Spectre Kaiseki Nyumon[M]. TIAN Qi, trans. Beijing: Seismological Press, 2008: 171-174. (in Chinese)

    [25] 王海云. 土层场地的放大作用随深度的变化规律研究—以金银岛岩土台阵为例[J]. 地球物理学报, 2014, 57(5): 1498-1509. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201405014.htm

    WANG Hai-yun. Study on variation of soil site amplification with depth: a case at Treasure Island geotechnical array, San Francisco Bay[J]. Chinese Journal of Geophysics, 2014, 57(5): 1498-1509. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201405014.htm

    [26]

    STEIDL J H, TUMARKIN A G, ARCHULETA R J. What is a reference site?[J]. Bulletin of the Seismological Society of America, 1996, 86(6): 1733-1748.

    [27]

    DIMITRIU P, KALOGERAS I, THEODULIDIS N. Evidence of nonlinear site response in horizontal-to-vertical spectral ratio from near-field earthquakes[J]. Soil dynamics and Earthquake Engineering, 1999, 18(6): 423-435.

  • 期刊类型引用(0)

    其他类型引用(2)

图(10)  /  表(6)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-05-31
  • 网络出版日期:  2022-12-04
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回