Experimental investigations on tensile mechanical properties of geocell strips
-
摘要: 土工格室作为一种新型三维立体加筋加固岩土材料,通过约束土体侧向变形继而提升结构承载力,减小变形。目前国内外对土工格室的研究主要集中在工程应用和加筋机理上,对土工格室材料特别是条带本身的拉伸力学特性研究相对较少。通过对高密度聚乙烯HDPE,聚丙烯PP和聚酯PET 3种原料制成的土工格室条带进行单轴拉伸试验,研究了试样形状(Ⅰ型-哑铃形、Ⅱ型-矩形)及试样尺寸(Ⅱ型-矩形、Ⅲ型-矩形)对土工格室条带强度和变形特性的影响,并对土工格室条带的断裂处进行了微观分析。结果表明,HDPE、PP、PET 3种土工格室条带的伸长率均对试样形状敏感,Ⅰ型-哑铃形试样伸长率小于Ⅱ型-矩形试样。HDPE土工格室条带的抗拉强度受试样形状、尺寸影响均较小。PP、PET土工格室条带的抗拉强度受试样形状影响较大,Ⅰ型-哑铃形抗拉强度小于Ⅱ型-矩形试样。HDPE土工格室条带断裂面较粗糙,有明显的塑性屈服变形。PP土工格室条带断裂面微纤束排列整齐,小微纤杂乱分布。PET土工格室条带断裂面较平滑。试验结果可为土工格室加筋加固机理研究提供参考。Abstract: The geocell is a new type of three-dimensional reinforced geotechnical material to restrain the lateral deformation of the soil to enhance the bearing capacity of structure and reduce its deformation. At present, the worldwide investigations on geocells are mainly focused on their engineering applications and reinforcement mechanism, while limited investigations are conducted on themselves, especially the tensile mechanical properties of the strips. The uniaxial tensile tests are conducted on the geocell strips made from high-density polyethylene (HDPE), polypropylene (PP) and polyester (PET). The effects of the shapes (Type I-dumbbell, Type II-rectangular) and sizes (Type II-rectangular, Type III-rectangular) of the specimens on the strength and deformation characteristics of geocell strips are studied, and the micro-analysis on the failure geocell strips is performed. It is determined that the elongation rates of the HDPE, PP and PET geocell strips are sensitive to the specimen shape. The elongation of Type I-dumbbell is smaller than that of Type II-rectangular. The shape and size of the specimens have some effects on the strength of the HDPE geocell strips. The strengths of PP and PET geocell strips are greatly affected by the specimen shape. The tensile strength of Type I-dumbbell is smaller than that of Type II-rectangular. The fractured surface of HDPE geocell has rough surface and obvious plastic yield deformation. The microfibril bundles on the fractured surface of the PP geocell are neatly arranged, and the microfibrils are randomly distributed. The fractured surface of PET geocell is smooth. The test results can provide reference for the study on reinforcement mechanism of the geocells.
-
Keywords:
- geocell strip /
- tensile test /
- Type I-dumbbell /
- Type II-rectangular /
- Type III-rectangular
-
-
表 1 土工格室条带参数
Table 1 Parameters of geocell strips
材料 生产工艺 格室高度H/ mm 格室片厚度T/ mm 结点距离A/ mm HDPE 挤出型 50 1.1 400 PP 拉伸型 50 0.6 400 PET 拉伸型 50 0.6 400 表 2 HDPE土工格室条带拉伸试验结果
Table 2 Tensile test results of HDPE geocell strips
试样形状 抗拉强度/(N·cm-1) 强度比/% 伸长率/% 伸长率之比/% Ⅰ型–哑铃形 391 93 36 61 Ⅱ型–矩形 398 95 58 99 Ⅲ型–矩形 421 — 59 — 表 3 PP土工格室条带拉伸试验结果
Table 3 Tensile test results of PP geocell strips
试样形状 抗拉强度/(N·cm-1) 强度比/% 伸长率/% 伸长率之比/% Ⅰ型–哑铃形 1738 80 13 72 Ⅱ型–矩形 1985 91 16 89 Ⅲ型–矩形 2183 — 18 — 表 4 PET土工格室条带拉伸试验结果
Table 4 Tensile test results of PET geocell strips
试样形状 抗拉强度/(N·cm-1) 强度比/% 伸长率/% 伸长率之比/% Ⅰ型–哑铃形 1620 82 17 50 Ⅱ型–矩形 1860 94 26 76 Ⅲ型–矩形 1987 — 34 — -
[1] BIABANI M M, INDRARATNA B, NIMBALKAR S. Behaviour of geocell reinforced sub-ballast under cyclic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(1): 109-119.
[2] 孙州, 张孟喜, 姜圣卫. 条形荷载下土工格室加筋砂土路堤模型试验研究[J]. 岩土工程学报, 2015, 37(增刊2): 170-175. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2034.htm SUN Zhou, ZHANG Meng-xi, JIANG Sheng-wei. Model tests on sand embankment reinforced with geocell subjected to strip loading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 170-175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2034.htm
[3] NETO J O A. Application of the two-layer system theory to calculate the settlements and vertical stress propagation in soil reinforcement with geocell[J]. Geotextiles and Geomembranes, 2019, 47(1): 32-41. doi: 10.1016/j.geotexmem.2018.09.003
[4] IMAN M, MAHMOUD G, REZA Z. Stability analysis of geocell-reinforced slopes using the limit equilibrium horizontal slice method[J]. International Journal of Geomechanics, 2017, 17(9): 06017007. doi: 10.1061/(ASCE)GM.1943-5622.0000935
[5] SONG F, LIU H, MA L, et al. Numerical analysis of geocell-reinforced retaining wall failure modes[J]. Geotextiles and Geomembranes, 2018, 46(3): 284-296. doi: 10.1016/j.geotexmem.2018.01.004
[6] 刘蓓蓓, 张孟喜, 王东. 基于强度折减法的土工格室加筋路堤稳定性分析[J]. 上海大学学报(自然科学版), 2018, 24(2): 287-295. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201802016.htm LIU Bei-bei, ZHANG Meng-xi, WANG Dong. Stability analysis of geocell reinforced embankment with strength reduction method[J]. Journal of Shanghai University(Natural Science Edition), 2018, 24(2): 287-295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201802016.htm
[7] 彭艾鑫, 张孟喜, 朱华超. 高强土工格室加筋砂土性状的三轴试验[J]. 上海大学学报(自然科学版), 2017, 23(4): 590-599. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201704013.htm PENG Ai-xin, ZHANG Meng-xi, ZHU Hua-chao. Triaxial test of high strength geocell reinforced soil[J]. Journal of Shanghai University (Natural Science Edition), 2017, 23(4): 590-599. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201704013.htm
[8] 赵明华, 陈大兴, 刘猛, 等. 考虑土拱效应影响的路堤荷载下土工格室加筋体变形分析[J]. 岩土工程学报, 2020, 42(4): 601-609. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004003.htm ZHAO Ming-hua, CHEN Da-xing, LIU Meng, et al. Deformation analysis of geocell-reinforced body under embankment load considering soil arch effect[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 601-609. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004003.htm
[9] 高昂, 张孟喜, 刘芳, 等. 分级循环荷载下土工格室加筋路堤模型试验研究[J]. 岩土力学, 2016, 37(8): 2213-2221. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608012.htm GAO Ang, ZHANG Meng-xi, LIU Fang, et al. Model experimental study of embankment reinforced with geocells under stepped cyclic loading[J]. Rock and Soil Mechanics, 2016, 37(8): 2213-2221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608012.htm
[10] 晏长根, 顾良军, 杨晓华, 等. 土工格室加筋黄土的三轴剪切性能[J]. 中国公路学报, 2017, 30(10): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201710003.htm YAN Chang-gen, GU Liang-jun, YANG Xiao-hua, et al. Triaxial shear property of geocell-reinforced loess[J]. China Journal of Highway and Transport, 2017, 30(10): 17-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201710003.htm
[11] 赵明华, 龙军, 张玲, 等. 不同型式复合地基试验对比分析[J]. 岩土工程学报, 2013, 35(4): 611-618. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304004.htm ZHAO Ming-hua, LONG Jun, ZHANG Ling, et al. Comparative analysis of model tests on different types of composite foundations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 611-618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304004.htm
[12] 杨利. 用土工格室加固的粗粒土力学特性研究[D]. 大连: 大连理工大学, 2013. YANG Li. Study on Mechanical Properties of Coarse Grained Soil Reinforced with Geocell[D]. Dalian: Dalian University of Technology, 2013. (in Chinese)
[13] 李俊伟, 黄宏伟. 土工格室HDPE条带拉伸应变率相关特性[J]. 建筑材料学报, 2008, 11(1): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200801011.htm LI Jun-wei, HUANG Hong-wei. Strain rate dependent tensile behavior of hdpe geocell strip[J]. Journal of Building Materials, 2008, 11(1): 47-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200801011.htm
[14] LIU Y, DENG A, JAKSA M. Failure mechanisms of geocell walls and junctions[J]. Geotextiles and Geomembranes, 2019, 47(2): 104-120.
[15] 张雯静, 王鸿博, 傅佳佳, 等. Ⅰ型-哑铃形试样在纳米纤维膜拉伸性能测试中的应用探讨[J]. 材料导报, 2013, 27(增刊2): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2013S2005.htm ZHANG Wen-jing, WANG Hong-bo, FU Jia-jia, et al. Investigation on application of dumbbell-shaped specimen in tensile property test of nanofiber membrane[J]. Materials Review, 2013, 27(S2): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2013S2005.htm
[16] 刘杰. 塑料土工格栅拉伸性能及工艺研究[D]. 济南: 山东大学, 2015. LIU Jie. The Tensile Property and Technology Research of Plastic Geogrid[D]. Jinan: Shandong University, 2015. (in Chinese)