• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

非饱和土中圆柱孔扩张问题不排水解答及吸力影响效应分析

张亚国, 翟张辉, 梁发云, 李同录

张亚国, 翟张辉, 梁发云, 李同录. 非饱和土中圆柱孔扩张问题不排水解答及吸力影响效应分析[J]. 岩土工程学报, 2021, 43(4): 734-742. DOI: 10.11779/CJGE202104016
引用本文: 张亚国, 翟张辉, 梁发云, 李同录. 非饱和土中圆柱孔扩张问题不排水解答及吸力影响效应分析[J]. 岩土工程学报, 2021, 43(4): 734-742. DOI: 10.11779/CJGE202104016
ZHANG Ya-guo, ZHAI Zhang-hui, LIANG Fa-yun, LI Tong-lu. Critical cylindrical cavity expansion in unsaturated soil under undrained conditions incorporating suction effects[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 734-742. DOI: 10.11779/CJGE202104016
Citation: ZHANG Ya-guo, ZHAI Zhang-hui, LIANG Fa-yun, LI Tong-lu. Critical cylindrical cavity expansion in unsaturated soil under undrained conditions incorporating suction effects[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 734-742. DOI: 10.11779/CJGE202104016

非饱和土中圆柱孔扩张问题不排水解答及吸力影响效应分析  English Version

基金项目: 

国家自然科学基金青年基金项目 41807242

中央高校基本科研业务费专项项目 300102281202

详细信息
    作者简介:

    张亚国(1984—),男,博士,副教授,主要从事土力学与基础工程的教学科研工作。E-mail: yaguozhang29@chd.edu.cn

    通讯作者:

    梁发云, E-mail: fyliang@tongji.edu.cn

  • 中图分类号: TU431

Critical cylindrical cavity expansion in unsaturated soil under undrained conditions incorporating suction effects

  • 摘要: 圆柱孔扩张理论为沉桩挤土及旁压试验分析等提供了理论基础,然而已有研究多是针对饱和土展开,在非饱和土相关工程中并不适用。基于修正剑桥临界状态模型,对非饱和土中不排水条件下的圆柱孔扩张问题进行求解。在考虑非饱和土吸力效应的情况下推导土体应力–应变关系式,并引入反映吸力与比体积之间关系的液相本构方程。在此基础上联立圆柱孔周围土单元平衡微分方程,最终将非饱和土中的圆柱孔扩张问题归结为求解一阶偏微方程组的问题。通过引入辅助变量将所有方程转至拉格朗日系下,以弹塑性边界上的应力及比体积作为初值条件对其进行求解。结果表明:当非饱和吸力增大时,圆柱孔周围土体应力和扩孔压力均随之增大,说明土体出现了吸力硬化效应;对于初始比体积较小的土体,随着塑性区内的径向位置增加,比体积和吸力会出现先增大后减小的变化特征,说明圆柱孔在不排水扩张过程中局部土体发生了剪胀。所采用的本构关系较为简洁,参数易于确定,便于在非饱和土相关的工程问题得到实际应用。
    Abstract: The cylindrical cavity expansion theory provides the theoretical basis for analysis of pile installation and pressuremeter tests. However, most of the studies are conducted on cavity expansion in saturated soil, and are unsuitable for solving the engineering problem in unsaturated soil. Therefore, based on the critical state soil model, the cylindrical cavity expansion in unsaturated soil under undrained conditions is solved. The stress-strain relationship is derived considering suction effects. Meanwhile, a constitutive equation for the relationship between the suction and the void volume is introduced. Combing the radial equilibrium equation, the formulation of the problem is reduced to solving a system of the first-order ordinary differential equations. Introducing an auxiliary variable, all of the differential equations are transferred to the Lagrangian description and solved by taking the values at the elasto-plastic boundary as the initial value. The results show that the soil stresses and the cavity expansion pressure increase as the suction increases, which can be regarded as the suction-stiffening effects. For the soil with low initial ratio volume, the partial volume and the suction in the plastic zone firstly increase, and then decrease, which implies that the shear dilatancy occurs during the cavity expansion. The results have a potential application in the related projects owing to the simple constitutive relation and available parameters.
  • 图  1   圆柱孔扩张模型

    Figure  1.   Model of cylindrical cavity expansion

    图  2   扩孔压力随孔径的变化

    Figure  2.   Variation of cavity pressure with cavity radius

    图  3   圆孔周围土体应力及比体积的径向变化

    Figure  3.   Radial variation of soil stress components and void ratio in surrounding soil

    图  4   p′–q平面内的应力路径

    Figure  4.   Stress paths in p′–q plane

    图  5   υ0=1.85的孔周土体应力、比体积及吸力的径向变化

    Figure  5.   Radial variation of soil stress, void ratio and suction in surrounding soil with u0=1.85

    图  6   υ0=1.70的孔周土体应力、比体积及吸力的径向变化

    Figure  6.   Radial variation of soil stress, void ratio and suction in surrounding soil with υ0=1.70

    图  7   υ0=1.55的孔周土体应力、比体积及吸力的径向变化

    Figure  7.   Radial variation of soil stress, void ratio and suction in surrounding soil with υ0=1.55

    图  8   e–lnp′平面内的应力路径

    Figure  8.   Stress paths in e-lnp′ plane

    图  9   圆孔周围吸力增量随径向位置的变化

    Figure  9.   Variation of suction increment with radial positions

    图  10   扩孔压力随孔径的变化

    Figure  10.   Variation of cavity pressure with cavity radius

  • [1]

    RANDOLPH M F, CARTER J P, WROTH C P. Driven piles in clay-the effects of installation and subsequent consolidation[J]. Géotechnique, 1979, 29(4): 361-393. doi: 10.1680/geot.1979.29.4.361

    [2]

    LEE F H, JUNEJA A, TAN T S. Stress and pore pressure changes due to sand compaction pile installation in soft clay[J]. Géotechnique, 2004, 54: 1-16. doi: 10.1680/geot.2004.54.1.01

    [3]

    SCHNAID F, OLIVEIRA L A K, GEHLING W Y Y. Unsaturated constitutive surfaces from pressuremeter tests[J]. Journal of Geotechnical and Geoenvironmental Enigineering, 2004, 130(2): 174-185. doi: 10.1061/(ASCE)1090-0241(2004)130:2(174)

    [4]

    MARSHALL A M. Tunnel-pile interaction analysis using cavity expansion methods[J]. J Geotech Geoenviron Eng, 2012, 138(10): 1237-1246. doi: 10.1061/(ASCE)GT.1943-5606.0000709

    [5] 梁发云, 陈龙珠. 应变软化Tresca材料中扩孔问题解答及其应用[J]. 岩土力学, 2004, 25(2): 261-265. doi: 10.3969/j.issn.1000-7598.2004.02.020

    LIANG Fa-yun, CHEN Long-zhu. Analytical solution to cavity expansion in strain-softening soils with Tresca yield criterion and its applications[J]. Rock and Soil Mechanics, 2004, 25(2): 261-265. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.02.020

    [6]

    CHEN S L, ABOUSLEIMAN N Y. Exact undrained elastoplastic solution for cylindrical cavity expansion in modified Cam Clay soil[J]. Géotechnique, 2012, 62(5): 447-456. doi: 10.1680/geot.11.P.027

    [7]

    LI L, LI J P, SUN D A. Anisotropically elasto-plastic solution to undrained cylindrical cavity expansion in K0-consolidated clay[J]. Comput Geotech, 2016, 73: 83-90. doi: 10.1016/j.compgeo.2015.11.022

    [8] 胡伟, 刘明振. 非饱和土中球形孔扩张的弹塑性分析[J]. 岩土工程学报, 2006, 28(10): 1292-1297. doi: 10.3321/j.issn:1000-4548.2006.10.022

    HU Wei, LIU Ming-zhen. Elastic-plastic solution of expansion of sphere cavity in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1292-1297. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.10.022

    [9]

    RUSSELL A R, KHALILI N. On the problem of cavity expansion in unsaturated soils[J]. Comput Mech, 2006, 37(4): 311-330. doi: 10.1007/s00466-005-0672-7

    [10]

    YANG H W, RUSSELL A R. Cavity expansion in unsaturated soils exhibiting hydraulic hysteresis considering three drainage conditions[J]. Int J Numer Anal Meth Geomech, 2015, 39: 1975-2016. doi: 10.1002/nag.2379

    [11]

    COLLINS I F, STIMPSON J R. Similarity solutions for drained and undrained cavity expansion in soils[J]. Géotechnique, 1994, 44(1): 21-34. doi: 10.1680/geot.1994.44.1.21

    [12]

    CHENG Y, YANG H W, SUN D A. Cavity expansion in unsaturated soils of finite radial extent[J]. Computers and Geotechnics, 2018, 102: 216-228. doi: 10.1016/j.compgeo.2018.06.013

    [13]

    CHEN S L, ABOUSLEIMAN N Y. Exact drained solution for cylindrical cavity expansion in modified cam clay soil[J]. Géotechnique, 2013, 63(6): 510-517. doi: 10.1680/geot.11.P.088

    [14] 翟张辉, 张亚国, 李同录, 等. 考虑非饱和土吸力效应的圆柱孔扩张有效应力解析[J]. 工程科学与技术, 2020, 52(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202003012.htm

    ZHAI Zhang-hui, ZHANG Ya-guo, LI Tong-lu, et al. effective stress solution for the cylindrical cavity expansion in unsaturated soil considering suction effect[J]. Advanced Engineering Sciences, 2020, 52(3): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202003012.htm

    [15]

    CHEN H H, LI L, LI J P, SUN D A. Elastoplastic solution for cylindrical cavity expansion in unsaturated soils[J]. Comput Geotech, 2020, 123: 103569. doi: 10.1016/j.compgeo.2020.103569

    [16]

    BISHOP A W. The principle of effective stress[J]. Teknisk Ukeblad, 1959, 106(39): 859-863.

    [17]

    WOOD D M. Soil Behaviour and Critical State Soil Mechanics[M]. Cambridge U K: Cambridge University Press, 1990.

    [18]

    RUSSELL A R, KHALILI N. Cavity expansion in unsaturated soils[C]//Proceedings of the 3rd International Conference on Unsaturated soils, Edited by Juca JFT, de Campos and Marinho FAM, 2002, Recife: 233-238.

  • 期刊类型引用(8)

    1. 冯德銮,黎森宇,梁仕华. 水泥固化滨海软土动力特性研究进展与评述. 广东工业大学学报. 2024(02): 23-36 . 百度学术
    2. 王喆恺,谭慧明,陶小三. 应力路径对盐城粉质黏土动剪切模量影响试验研究. 中国港湾建设. 2024(08): 44-49+73 . 百度学术
    3. 苟乐宇,李飒,张先伟. 菌丝–砂复合轻质土的静力强度特性研究. 岩石力学与工程学报. 2024(10): 2590-2598 . 百度学术
    4. 杨海华,刘亮,刘汉龙,高鹏展,陈育民. 高聚物胶凝戈壁土的动模量及阻尼比试验研究. 振动与冲击. 2023(03): 12-20 . 百度学术
    5. 何俊,张驰,管家贤,吕晓龙. 碱渣固化疏浚淤泥的动变形特性研究. 岩石力学与工程学报. 2023(S1): 3712-3721 . 百度学术
    6. 郭鹏斐,侯天顺,刘茜,骆亚生. 直剪试验方法对轻量土抗剪强度的影响规律研究. 水利水电技术(中英文). 2023(04): 161-170 . 百度学术
    7. 杨凯旋,侯天顺,王琪,骆亚生. 剪切速率对EPS颗粒混合轻量土抗剪强度的影响规律研究. 水资源与水工程学报. 2022(05): 200-207 . 百度学术
    8. 侯天顺,郭鹏斐,杨凯旋,王琪,骆亚生. 发泡颗粒混合轻量土静止土压力特性及计算方法研究. 岩土工程学报. 2022(12): 2234-2244 . 本站查看

    其他类型引用(17)

图(10)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 25
出版历程
  • 收稿日期:  2020-06-07
  • 网络出版日期:  2022-12-04
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回