基于平行黏结水弱化模型的页岩吸水软化离散元模拟

    胡训健, 卞康, 刘建, 谢正勇, 陈明, 李冰洋, 岑越, 刘振平

    胡训健, 卞康, 刘建, 谢正勇, 陈明, 李冰洋, 岑越, 刘振平. 基于平行黏结水弱化模型的页岩吸水软化离散元模拟[J]. 岩土工程学报, 2021, 43(4): 725-733. DOI: 10.11779/CJGE202104015
    引用本文: 胡训健, 卞康, 刘建, 谢正勇, 陈明, 李冰洋, 岑越, 刘振平. 基于平行黏结水弱化模型的页岩吸水软化离散元模拟[J]. 岩土工程学报, 2021, 43(4): 725-733. DOI: 10.11779/CJGE202104015
    HU Xun-jian, BIAN Kang, LIU Jian, XIE Zheng-yong, CHEN Ming, LI Bing-yang, CEN Yue, LIU Zhen-ping. Discrete element simulation of shale softening based on parallel-bonded water-weakening model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 725-733. DOI: 10.11779/CJGE202104015
    Citation: HU Xun-jian, BIAN Kang, LIU Jian, XIE Zheng-yong, CHEN Ming, LI Bing-yang, CEN Yue, LIU Zhen-ping. Discrete element simulation of shale softening based on parallel-bonded water-weakening model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 725-733. DOI: 10.11779/CJGE202104015

    基于平行黏结水弱化模型的页岩吸水软化离散元模拟  English Version

    基金项目: 

    国家重点研发计划项目 2016YFC0401802

    国家自然科学基金重点项目 51539002

    国家自然科学基金项目 51779249

    湖北省自然科学基金项目 2018CFB632

    详细信息
      作者简介:

      胡训健(1995—),男,硕士,主要从事岩石破裂的数值模拟方面的研究工作。E-mail: huxunjian18@mails.ucas.edu.cn

      通讯作者:

      卞康, E-mail: biankang2002@163.com

    • 中图分类号: TU431

    Discrete element simulation of shale softening based on parallel-bonded water-weakening model

    • 摘要: 基于颗粒离散元方法,通过构建损伤因子,提出了平行黏结水弱化模型,建立了考虑胶结物力学参数的非均质性的颗粒流模型。通过室内试验和数值模拟计算结果的对比分析,验证了所提模型的正确性和适用性。主要结论如下:①岩石胶结物的非均质性对岩石宏观力学性质存在一定影响。随着均质性因子m的增加,岩石均质性增加,单轴抗压强度和弹性模量也随之增加,符合指数函数关系;②随着黏结面积系数的增加,岩石所储存的总应变能的总量和增速逐渐降低;③岩石在干燥状态下,微裂纹倾角集中于80°~100°,随着黏结面积系数的增加,微裂纹倾角的分布范围逐渐增加;④随着黏结面积系数的增加,岩石破裂面更为密集,且贯通性增强。研究结果可为深埋隧道遇水产生围岩大变形、库岸涉水边坡变形等问题的细观机制研究提供了一定的依据和理论指导。
      Abstract: Based on the discrete element method of particles, by constructing damage factors, a parallel-bonded water-weakening model is proposed, and a particle flow code model considering the heterogeneity of the mechanical parameters of the cement is established. The comparison and analysis of the results of indoor experiments and numerical simulations verify the correctness and applicability of the proposed model. The main conclusions are as follows: (1) The heterogeneity of rock cement has certain influences on the macroscopic mechanical properties of rock. As the homogeneity factor increases, the homogeneity of the rock increases, and the uniaxial compressive strength and elastic modulus also increase, which conforms to the exponential function relationship. (2) With the increase of the bond area coefficient, the total amount and growth rate of the stored total strain energy in the rock gradually decrease. (3) In the dry state of the rock, the inclination angle of micro-cracks is concentrated in 80°~100°. As the bond area coefficient increases, the distribution range of the inclination angle of micro-cracks gradually increases. (4) With the increase of the bond area coefficient, the rock fracture surface is denser and the penetration is enhanced. The research results can provide a certain basis and theoretical guidance for the meso-mechanism study on the large deformation of the surrounding rock caused by the water in deep-buried tunnels and the deformation of the wading slope of the reservoir bank.
    • 图  1   宏观损伤因子与浸水时间的关系

      Figure  1.   Relationship between macro-damage factor and water immersion time

      图  2   颗粒流模型示意图

      Figure  2.   Schematic diagram of particle flow code model

      图  3   细观损伤因子随浸水时间的关系

      Figure  3.   Relationship between mesoscopic damage factor and immersion time

      图  4   数值模拟与室内试验结果对比

      Figure  4.   Comparison between numerical simulation and laboratory test results

      图  5   平行黏结半径乘子概率密度(Sr=0.888, λ¯=0.486)

      Figure  5.   Probability density of parallel bond radius multipliers

      图  6   宏观力学性质与均质性因子的关系

      Figure  6.   Relationship between macro-mechanical properties and homogeneity factors

      图  7   均质性因子m和黏结面积系数Sr耦合对岩石宏观力学性质的影响

      Figure  7.   Effects of homogeneity factor and bonded area coefficient coupling on macro-mechanical properties of rock

      图  8   模型能量耗散与应力–应变关系(Sr=0.432)

      Figure  8.   Energy dissipation and stress-strain relationship of model

      图  9   总应变能与黏结面积系数的关系

      Figure  9.   Relationship between total strain energy and bonded area coefficient

      图  10   微裂纹的倾角分布

      Figure  10.   Distribution of dip angle of microcracks

      图  11   破坏模式与接触力分布(接触力单位为N)

      Figure  11.   Failure modes and distribution of contact force

      表  1   PWW模型计算参数

      Table  1   Parameters of PWW model

      时间/d弹性模量/GPa宏观损伤因子细观损伤因子平行黏结半径乘子特征值黏结面积/m2黏结面积系数
      027.380.0000.0001.00030.140.000
      225.670.0620.0510.94928.620.087
      1520.900.2360.2510.74922.610.432
      3017.590.3570.4120.58817.730.712
      5013.550.5050.5140.48614.650.888
      7012.360.5480.5500.45013.570.950
      9011.400.5830.5790.42112.701.000
      下载: 导出CSV

      表  2   颗粒流模型细观参数

      Table  2   Mesoscopic parameters of particle flow code model

      参数取值
      颗粒密度/(kg·m-3)2650.0
      最小粒径/mm0.15
      粒径比1.66
      颗粒接触模量/GPa13.5
      颗粒刚度比3.0
      颗粒摩擦系数0.5
      均质性因子10.0
      平行黏结模量/GPa13.5
      平行黏结刚度比3.0
      平行黏结抗拉强度/MPa20.55
      平行黏结黏聚力/MPa40.55
      平行黏结内摩擦角/(°)30.0
      下载: 导出CSV
    • [1] 刘新荣, 傅晏, 王永新, 等. 水-岩相互作用对库岸边坡稳定的影响研究[J]. 岩土力学, 2009, 30(3): 613-616. doi: 10.3969/j.issn.1000-7598.2009.03.006

      LIU Xin-rong, FU Yan, WANG Yong-xin, et al. Stability of reservoir bank slope under water-rock interaction[J]. Rock and Soil Mechanics, 2009, 30(3): 613-616. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.03.006

      [2] 刘新荣, 李栋梁, 张梁, 等. 干湿循环对泥质砂岩力学特性及其微细观结构影响研究[J]. 岩土工程学报, 2016, 38(7): 1291-1300. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607017.htm

      LIU Xin-rong, LI Dong-liang, ZHANG Liang, et al. The research on the wet-dry cycle's influence on the mechanical properties and microstructure change law of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607017.htm

      [3] 杨春和, 冒海军, 王学潮, 等. 板岩遇水软化的微观结构及力学特性研究[J]. 岩土力学, 2006, 27(12): 2090-2098. doi: 10.3969/j.issn.1000-7598.2006.12.002

      YANG Chun-he, MAO Hai-jun, WANG Xue-chao, et al. Study on variation of microstructure and mechanical properties of water-weakening slates[J]. Rock and Soil Mechanics, 2006, 27(12): 2090-2098. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.12.002

      [4]

      HE Man-chao. Latest progress of soft rock mechanics and engineering in China[J]. Journal of Rock Mechanics & Geotechnical Engineering, 2014, 6(3): 165-179.

      [5] 闫章程, 孙辉, 李利平, 等. 干燥与饱水灰岩单轴压缩过程中声发射特征的影响研究[J]. 长江科学院院报, 待刊. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202004019.htm

      YAN Zhang-cheng, SUN Hui, LI Li-ping, et al. Research on the effect of acoustic emission characteristics in dry and saturated limestone under uniaxial compression[J]. Journal of Yangtze River Scientific Research Institute, in press. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202004019.htm

      [6] 朱宝龙, 李晓宁, 巫锡勇, 等. 黑色页岩遇水膨胀微观特征试验研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 3896-3905. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2033.htm

      ZHU Bao-long, LI Xiao-ning, WU Xi-yong, et al. Experimental study of micro-characteristics of swelling for black shale under influence of water[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3896-3905. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2033.htm

      [7]

      LIN M L, JENG F S, TSAI L S, et al. Wetting weakening of tertiary sandstones-microscopic mechanism[J]. Environ Geol, 2005, 48: 265-275. doi: 10.1007/s00254-005-1318-y

      [8]

      POTYONDY D O, CUNDALL P A. A bond-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. doi: 10.1016/j.ijrmms.2004.09.011

      [9] 柳万里, 晏鄂川, 戴航, 等. 巴东组泥岩水作用的特征强度及其能量演化规律研究[J]. 岩石力学与工程学报, 2020, 39(2): 311-326. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002011.htm

      LIU Wan-li, YAN E-chuan, DAI Hang, et al. Study on characteristic strength and energy evolution law of Badong formation mudstone under water effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 311-326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002011.htm

      [10] 邓华锋, 支永艳, 段玲玲, 等. 水−岩作用下砂岩力学特性及微细观结构损伤演化[J]. 岩土力学, 2019, 40(9): 3447-3456. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm

      DENG Hua-feng, ZHI Yong-yan, DUAN Ling-ling, et al. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction[J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm

      [11] 卞康, 陈彦安, 刘建, 等. 不同吸水时间下页岩卸荷破坏特征的颗粒流离散元研究[J]. 岩土力学, 2020, 41(增刊1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1041.htm

      BIAN Kang, CHEN Yan-an, LIU Jian, et al. The unloading failure characteristics of shale under different water absorption time using the PFC numerical method[J]. Rock and Soil Mechanics, 2020, 41(S1): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1041.htm

      [12]

      ZHAO Z, SONG E X. Particle mechanics modeling of creep behavior of rockfill materials under dry and wet conditions[J]. Computers and Geotechnics, 2015, 68: 137-146.

      [13]

      POTYONDY D O. Simulating stress corrosion with a bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 677-691.

      [14]

      KANG B, JIAN L, WEI Z, et al. Mechanical behavior and damage constitutive model of rock subjected to water-weakening effect and uniaxial loading[J]. Rock Mechanics and Rock Engineering, 2018, 52: 97-106.

      [15]

      Itasca Consulting Group Inc. PFC, Version 5.0[M]. Minneapolis: Itasca Consulting Group Inc, 2014: 1-2.

      [16]

      GRADY D L, KIPP M L. Continuum modeling of explosive fracture in oil shale[J]. Int J Rock Mech Min Sci, 1980, 17: 147-157.

      [17]

      TANG C A, LIU H, LEE P, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression—part I: effect of heterogeneity[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 555-569.

      [18] 李欢. 深埋岩体非均质时效破裂机制及细观演化机理[D]. 武汉: 长江科学院, 2017.

      LI Huan. Aging Rupture Mechanism and Mesoscopic Evolution Mechanism of Deep Heterogeneous Rock Mass[D]. Wuhan: Changjiang River Scientific Research Institute, 2017. (in Chinese)

      [19]

      BLAIR S C, COOK N G W. Analysis of compressive fracture in rock using statistical techniques: Part II. Effect of microscale heterogeneity on macroscopic deformation[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 849-861.

      [20] 蒋明镜, 张鹏, 廖兆文. 考虑水软化-化学风化作用的岩石单轴压缩试验离散元模拟[J]. 中国水利水电科学研究院学报, 2017, 15(2): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201702002.htm

      JIANG Ming-jing, ZHANG Peng, LIAO Zhao-wen. DEM numerical simulation of rock under the influence of water softening and chemical weathering and chemical weathering in uniaxial compression test[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15(2): 89-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201702002.htm

      [21]

      LIU H Y, ROQUETE A, KOU S Q, et al. Characterization of rock heterogeneity and numerical verification[J]. Eng Geol, 2004, 72: 89-119.

      [22]

      CHEN Z H, THAM L G, YEUNG M R, et al. Confinement effects for damage and failure of brittle rocks[J]. Int J Rock Mech Min Sci, 2006, 43: 1262-1269.

      [23] 郭佳奇, 刘希亮, 乔春生. 自然与饱水状态下岩溶灰岩力学性质及能量机制试验研究[J]. 岩石力学与工程学报, 2014, 33(2): 296-308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402011.htm

      GUO Jia-qi, LIU Xi-liang, QIAO Chun-sheng. Experimental study of mechanical properties and energy mechanism of karst limestone under natural and saturated states[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 296-308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402011.htm

      [24] 李天斌, 陈子全, 陈国庆, 等. 不同含水率作用下砂岩的能量机制研究[J]. 岩土力学, 2015, 36(增刊2): 229-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2031.htm

      LI Tian-bin, CHEN Zi-quan, CHEN Guo-qing, et al. An experimental study of energy mechanism of sandstone with different moisture contents[J]. Rock and Soil Mechanics, 2015, 36(S2): 229-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2031.htm

      [25]

      LI L, LEE PKK, TSUI Y, et al. Failure process of granite[J]. Int J Geomech, 2003(3): 84-98.

      [26] 郑晓卿, 刘建, 卞康, 等. 鄂西北页岩饱水软化微观机制与力学特性研究[J]. 岩土力学, 2017, 38(7): 2022-2028. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707023.htm

      ZHENG Xiao-qing, LIU Jian, BIAN Kang, et al. Softening micro-mechanism and mechanical properties of water-saturated shale in Northwestern Hubei[J]. Rock and Soil Mechanics, 2017, 38(7): 2022-2028. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707023.htm

    图(11)  /  表(2)
    计量
    • 文章访问数: 
    • HTML全文浏览量:  0
    • PDF下载量: 
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-06-21
    • 网络出版日期:  2022-12-04
    • 刊出日期:  2021-03-31

    目录

      /

      返回文章
      返回