Discrete element simulation of shale softening based on parallel-bonded water-weakening model
-
摘要: 基于颗粒离散元方法,通过构建损伤因子,提出了平行黏结水弱化模型,建立了考虑胶结物力学参数的非均质性的颗粒流模型。通过室内试验和数值模拟计算结果的对比分析,验证了所提模型的正确性和适用性。主要结论如下:①岩石胶结物的非均质性对岩石宏观力学性质存在一定影响。随着均质性因子m的增加,岩石均质性增加,单轴抗压强度和弹性模量也随之增加,符合指数函数关系;②随着黏结面积系数的增加,岩石所储存的总应变能的总量和增速逐渐降低;③岩石在干燥状态下,微裂纹倾角集中于80°~100°,随着黏结面积系数的增加,微裂纹倾角的分布范围逐渐增加;④随着黏结面积系数的增加,岩石破裂面更为密集,且贯通性增强。研究结果可为深埋隧道遇水产生围岩大变形、库岸涉水边坡变形等问题的细观机制研究提供了一定的依据和理论指导。Abstract: Based on the discrete element method of particles, by constructing damage factors, a parallel-bonded water-weakening model is proposed, and a particle flow code model considering the heterogeneity of the mechanical parameters of the cement is established. The comparison and analysis of the results of indoor experiments and numerical simulations verify the correctness and applicability of the proposed model. The main conclusions are as follows: (1) The heterogeneity of rock cement has certain influences on the macroscopic mechanical properties of rock. As the homogeneity factor increases, the homogeneity of the rock increases, and the uniaxial compressive strength and elastic modulus also increase, which conforms to the exponential function relationship. (2) With the increase of the bond area coefficient, the total amount and growth rate of the stored total strain energy in the rock gradually decrease. (3) In the dry state of the rock, the inclination angle of micro-cracks is concentrated in 80°~100°. As the bond area coefficient increases, the distribution range of the inclination angle of micro-cracks gradually increases. (4) With the increase of the bond area coefficient, the rock fracture surface is denser and the penetration is enhanced. The research results can provide a certain basis and theoretical guidance for the meso-mechanism study on the large deformation of the surrounding rock caused by the water in deep-buried tunnels and the deformation of the wading slope of the reservoir bank.
-
-
表 1 PWW模型计算参数
Table 1 Parameters of PWW model
时间/d 弹性模量/GPa 宏观损伤因子 细观损伤因子 平行黏结半径乘子特征值 黏结面积/m2 黏结面积系数 0 27.38 0.000 0.000 1.000 30.14 0.000 2 25.67 0.062 0.051 0.949 28.62 0.087 15 20.90 0.236 0.251 0.749 22.61 0.432 30 17.59 0.357 0.412 0.588 17.73 0.712 50 13.55 0.505 0.514 0.486 14.65 0.888 70 12.36 0.548 0.550 0.450 13.57 0.950 90 11.40 0.583 0.579 0.421 12.70 1.000 表 2 颗粒流模型细观参数
Table 2 Mesoscopic parameters of particle flow code model
参数 取值 颗粒密度/(kg·m-3) 2650.0 最小粒径/mm 0.15 粒径比 1.66 颗粒接触模量/GPa 13.5 颗粒刚度比 3.0 颗粒摩擦系数 0.5 均质性因子 10.0 平行黏结模量/GPa 13.5 平行黏结刚度比 3.0 平行黏结抗拉强度/MPa 20.55 平行黏结黏聚力/MPa 40.55 平行黏结内摩擦角/(°) 30.0 -
[1] 刘新荣, 傅晏, 王永新, 等. 水-岩相互作用对库岸边坡稳定的影响研究[J]. 岩土力学, 2009, 30(3): 613-616. doi: 10.3969/j.issn.1000-7598.2009.03.006 LIU Xin-rong, FU Yan, WANG Yong-xin, et al. Stability of reservoir bank slope under water-rock interaction[J]. Rock and Soil Mechanics, 2009, 30(3): 613-616. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.03.006
[2] 刘新荣, 李栋梁, 张梁, 等. 干湿循环对泥质砂岩力学特性及其微细观结构影响研究[J]. 岩土工程学报, 2016, 38(7): 1291-1300. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607017.htm LIU Xin-rong, LI Dong-liang, ZHANG Liang, et al. The research on the wet-dry cycle's influence on the mechanical properties and microstructure change law of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607017.htm
[3] 杨春和, 冒海军, 王学潮, 等. 板岩遇水软化的微观结构及力学特性研究[J]. 岩土力学, 2006, 27(12): 2090-2098. doi: 10.3969/j.issn.1000-7598.2006.12.002 YANG Chun-he, MAO Hai-jun, WANG Xue-chao, et al. Study on variation of microstructure and mechanical properties of water-weakening slates[J]. Rock and Soil Mechanics, 2006, 27(12): 2090-2098. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.12.002
[4] HE Man-chao. Latest progress of soft rock mechanics and engineering in China[J]. Journal of Rock Mechanics & Geotechnical Engineering, 2014, 6(3): 165-179.
[5] 闫章程, 孙辉, 李利平, 等. 干燥与饱水灰岩单轴压缩过程中声发射特征的影响研究[J]. 长江科学院院报, 待刊. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202004019.htm YAN Zhang-cheng, SUN Hui, LI Li-ping, et al. Research on the effect of acoustic emission characteristics in dry and saturated limestone under uniaxial compression[J]. Journal of Yangtze River Scientific Research Institute, in press. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202004019.htm
[6] 朱宝龙, 李晓宁, 巫锡勇, 等. 黑色页岩遇水膨胀微观特征试验研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 3896-3905. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2033.htm ZHU Bao-long, LI Xiao-ning, WU Xi-yong, et al. Experimental study of micro-characteristics of swelling for black shale under influence of water[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3896-3905. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2033.htm
[7] LIN M L, JENG F S, TSAI L S, et al. Wetting weakening of tertiary sandstones-microscopic mechanism[J]. Environ Geol, 2005, 48: 265-275. doi: 10.1007/s00254-005-1318-y
[8] POTYONDY D O, CUNDALL P A. A bond-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. doi: 10.1016/j.ijrmms.2004.09.011
[9] 柳万里, 晏鄂川, 戴航, 等. 巴东组泥岩水作用的特征强度及其能量演化规律研究[J]. 岩石力学与工程学报, 2020, 39(2): 311-326. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002011.htm LIU Wan-li, YAN E-chuan, DAI Hang, et al. Study on characteristic strength and energy evolution law of Badong formation mudstone under water effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 311-326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002011.htm
[10] 邓华锋, 支永艳, 段玲玲, 等. 水−岩作用下砂岩力学特性及微细观结构损伤演化[J]. 岩土力学, 2019, 40(9): 3447-3456. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm DENG Hua-feng, ZHI Yong-yan, DUAN Ling-ling, et al. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction[J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm
[11] 卞康, 陈彦安, 刘建, 等. 不同吸水时间下页岩卸荷破坏特征的颗粒流离散元研究[J]. 岩土力学, 2020, 41(增刊1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1041.htm BIAN Kang, CHEN Yan-an, LIU Jian, et al. The unloading failure characteristics of shale under different water absorption time using the PFC numerical method[J]. Rock and Soil Mechanics, 2020, 41(S1): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1041.htm
[12] ZHAO Z, SONG E X. Particle mechanics modeling of creep behavior of rockfill materials under dry and wet conditions[J]. Computers and Geotechnics, 2015, 68: 137-146.
[13] POTYONDY D O. Simulating stress corrosion with a bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 677-691.
[14] KANG B, JIAN L, WEI Z, et al. Mechanical behavior and damage constitutive model of rock subjected to water-weakening effect and uniaxial loading[J]. Rock Mechanics and Rock Engineering, 2018, 52: 97-106.
[15] Itasca Consulting Group Inc. PFC, Version 5.0[M]. Minneapolis: Itasca Consulting Group Inc, 2014: 1-2.
[16] GRADY D L, KIPP M L. Continuum modeling of explosive fracture in oil shale[J]. Int J Rock Mech Min Sci, 1980, 17: 147-157.
[17] TANG C A, LIU H, LEE P, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression—part I: effect of heterogeneity[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 555-569.
[18] 李欢. 深埋岩体非均质时效破裂机制及细观演化机理[D]. 武汉: 长江科学院, 2017. LI Huan. Aging Rupture Mechanism and Mesoscopic Evolution Mechanism of Deep Heterogeneous Rock Mass[D]. Wuhan: Changjiang River Scientific Research Institute, 2017. (in Chinese)
[19] BLAIR S C, COOK N G W. Analysis of compressive fracture in rock using statistical techniques: Part II. Effect of microscale heterogeneity on macroscopic deformation[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 849-861.
[20] 蒋明镜, 张鹏, 廖兆文. 考虑水软化-化学风化作用的岩石单轴压缩试验离散元模拟[J]. 中国水利水电科学研究院学报, 2017, 15(2): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201702002.htm JIANG Ming-jing, ZHANG Peng, LIAO Zhao-wen. DEM numerical simulation of rock under the influence of water softening and chemical weathering and chemical weathering in uniaxial compression test[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15(2): 89-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201702002.htm
[21] LIU H Y, ROQUETE A, KOU S Q, et al. Characterization of rock heterogeneity and numerical verification[J]. Eng Geol, 2004, 72: 89-119.
[22] CHEN Z H, THAM L G, YEUNG M R, et al. Confinement effects for damage and failure of brittle rocks[J]. Int J Rock Mech Min Sci, 2006, 43: 1262-1269.
[23] 郭佳奇, 刘希亮, 乔春生. 自然与饱水状态下岩溶灰岩力学性质及能量机制试验研究[J]. 岩石力学与工程学报, 2014, 33(2): 296-308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402011.htm GUO Jia-qi, LIU Xi-liang, QIAO Chun-sheng. Experimental study of mechanical properties and energy mechanism of karst limestone under natural and saturated states[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 296-308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402011.htm
[24] 李天斌, 陈子全, 陈国庆, 等. 不同含水率作用下砂岩的能量机制研究[J]. 岩土力学, 2015, 36(增刊2): 229-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2031.htm LI Tian-bin, CHEN Zi-quan, CHEN Guo-qing, et al. An experimental study of energy mechanism of sandstone with different moisture contents[J]. Rock and Soil Mechanics, 2015, 36(S2): 229-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2031.htm
[25] LI L, LEE PKK, TSUI Y, et al. Failure process of granite[J]. Int J Geomech, 2003(3): 84-98.
[26] 郑晓卿, 刘建, 卞康, 等. 鄂西北页岩饱水软化微观机制与力学特性研究[J]. 岩土力学, 2017, 38(7): 2022-2028. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707023.htm ZHENG Xiao-qing, LIU Jian, BIAN Kang, et al. Softening micro-mechanism and mechanical properties of water-saturated shale in Northwestern Hubei[J]. Rock and Soil Mechanics, 2017, 38(7): 2022-2028. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707023.htm