• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

浅埋地下结构耐震时程分析法最优持时研究

钟紫蓝, 甄立斌, 陈群, 赵密, 杜修力

钟紫蓝, 甄立斌, 陈群, 赵密, 杜修力. 浅埋地下结构耐震时程分析法最优持时研究[J]. 岩土工程学报, 2021, 43(4): 698-705. DOI: 10.11779/CJGE202104012
引用本文: 钟紫蓝, 甄立斌, 陈群, 赵密, 杜修力. 浅埋地下结构耐震时程分析法最优持时研究[J]. 岩土工程学报, 2021, 43(4): 698-705. DOI: 10.11779/CJGE202104012
ZHONG Zi-lan, ZHEN Li-bin, CHEN Qun, ZHAO Mi, DU Xiu-li. Optimal duration of endurance time acceleration functions for shallow buried underground structures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 698-705. DOI: 10.11779/CJGE202104012
Citation: ZHONG Zi-lan, ZHEN Li-bin, CHEN Qun, ZHAO Mi, DU Xiu-li. Optimal duration of endurance time acceleration functions for shallow buried underground structures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 698-705. DOI: 10.11779/CJGE202104012

浅埋地下结构耐震时程分析法最优持时研究  English Version

基金项目: 

国家自然科学基金面上项目 51978020

国家自然科学基金联合基金项目 U1839201

国家重点研发计划项目 2018YFC 1504305

详细信息
    作者简介:

    钟紫蓝(1986—),男,博士,副研究员,主要从事生命线地震工程方面的研究工作。E-mail: zilanzhong@bjut.edu.cn

    通讯作者:

    赵密, E-mail: zhaomi@bjut.edu.cn

  • 中图分类号: TU311

Optimal duration of endurance time acceleration functions for shallow buried underground structures

  • 摘要: 为研究持时对地下结构耐震时程分析结果的影响,选取II类和III类工程场地中典型的两层三跨地铁车站为原型,以基岩场地地震动均值反应谱为目标谱,构造了6种典型持时的耐震加速度时程曲线作为输入。通过将耐震分析结果与增量动力分析基准结果对比表明,耐震加速度时程曲线的持时对分析结果影响显著。根据目标时间点与地震动能量指标阿里亚斯强度值的变化规律,给出了最优目标时间点的确定公式并进行验证。由研究结果可知,对于II和III类工程场地,耐震时程曲线较优持时分别为30 s和45 s;给出的目标时间点的确定公式对上述两类场地中的地下结构抗震性能评价具有一定适用性,当构造的耐震时程曲线在目标时间区段内的能量值与实际地震动的能量值较为接近时,耐震时程分析结果最为精确。
    Abstract: The effects of duration of the endurance time analysis on the seismic response of the underground structures are investigated. The typical two-story three-span subway station embedded in the sites of classes II and III is used as the prototype. The response spectra at the engineering bedrock is used as the target ones to develop six endurance time acceleration functions as the input motions for the nonlinear soil-structure interaction system. Using the results from the incremental dynamic analysis as the reference, the effects of time duration of the endurance time analysis on the seismic analysis of underground structures are significant. A formula to compute the optimal time duration based on the variations of earthquake ground motion energy measure, Arias intensity, with the target time is proposed and validated. It can be seen from the numerical results that endurance time acceleration functions with durations of 30 and 45 s are more favorable for the underground structures embedded in the sites of classes II and III, respectively. Moreover, the proposed formula for the optimal duration estimation is feasible for the seismic performance evaluation of underground structures in the above two site classes. The results from the endurance time analysis are more accurate when the total energy in the artificial endurance time acceleration function is close to the actual earthquake records.
  • 图  1   地铁车站横断面示意图

    Figure  1.   Cross-sectional details of subway station

    图  2   地铁车站二维整体有限元模型示意图

    Figure  2.   2D finite element model for soil-underground structure

    图  3   基岩场地地震动加速度反应谱(ξ=5%)

    Figure  3.   Elastic acceleration response spectra of bedrock earthquake records (ξ=5%)

    图  4   基于基岩地震动反应谱的不同持时耐震时程曲线示意图

    Figure  4.   Different durations of ETAFs based on response spectra of bedrock

    图  5   II类场地中ETA结果(t=45 s)

    Figure  5.   Results of ETAs in site class II (t=45 s)

    图  6   不同持时的ETA结果与IDA结果对比

    Figure  6.   Comparison between ETA results at different durations and IDA results

    图  7   不同持时的ETA结果与IDA结果相关性拟合

    Figure  7.   Correlation between ETA at different durations and IDA results

    图  8   数据点分布与公式拟合

    Figure  8.   Distribution data points and formula fitting

    图  9   持时为39 s的耐震时程曲线及其反应谱

    Figure  9.   ETAF at duration of 39 s and its response spectra

    图  10   持时为39 s的ETA结果与IDA结果对比

    Figure  10.   Comparison between ETA and IDA results (t=39 s)

    表  1   Ⅱ类场地土层物理参数表

    Table  1   Physical parameters of site class II soil

    土层类别厚度/m密度ρ/(t·m-3)剪切波速Vs/(m·s-1)黏聚力c/kPa摩擦角φ/(°)
    1人工填土4.01.9018020.012.0
    2粉质黏土4.01.9023030.020.0
    3细中砂17.02.003001.035.0
    4细粉砂15.02.003201.035.0
    5粗砂20.02.233801.035.0
    下载: 导出CSV

    表  2   Ⅲ类场地土层物理参数表

    Table  2   Physical parameters of site class III soil

    土层类别厚度/m密度ρ/(t·m-3)剪切波速Vs/(m·s-1)黏聚力c/kPa摩擦角φ/(°)
    1淤泥质土5.51.9012013.512.0
    2淤泥粉质黏土16.51.9016015.012.0
    3粉细砂17.01.902051.035.0
    4黏土21.02.0226320.020.0
    下载: 导出CSV

    表  3   不同持时耐震加速度时程参数

    Table  3   Parameters of different durations of ETAFs

    参数15 s30 s45 s60 s75 s90 s
    全时程PGA1.161.241.261.241.251.21
    0~tTarget间PGA0.410.370.420.390.400.39
    全时程IA2.073.324.795.906.617.32
    0~tTargetIA0.110.160.210.250.290.32
    下载: 导出CSV

    表  4   不同持时ETA结果与IDA结果拟合参数汇总

    Table  4   Summary of fitting parameters of ETA results at different durations and IDA results

    参数场地15 s30 s45 s60 s75 s90 s
    斜率bII0.9421.02900.97301.0401.1821.234
    III1.0851.18000.97301.4561.1661.436
    均方根σII0.1090.07400.09400.0820.1700.163
    III0.3500.37300.19900.9470.9630.983
    效率ξII0.0060.00210.00300.0030.0310.038
    III0.0300.06700.00540.4310.1600.428
    下载: 导出CSV
  • [1] 杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1): 53-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm

    DU Xiu-li, MA Chao, LU De-chun, et al. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads[J]. China Civil Engineering Journal, 2017, 50(1): 53-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm

    [2] 李田彬. 汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J]. 工程地质学报, 2008, 16(6): 742-750. doi: 10.3969/j.issn.1004-9665.2008.06.003

    LI Tian-bin. Failure characteristics and influence factor analysis of mountain tunnels at epicenter zones of great Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 742-750. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.06.003

    [3]

    SEAOC. Performance Based Seismic Engineering of buildings[R]. Version 2000 Committee. Sacramento: Structural Engineers Association of California, 1995.

    [4] 刘晶波, 刘祥庆, 李彬. 地下结构抗震分析与设计的Pushover分析方法[J]. 土木工程学报, 2008, 41(4): 73-80. doi: 10.3321/j.issn:1000-131X.2008.04.011

    LIU Jing-bo, LIU Xiang-qing, LI Bin. A pushover analysis method for seismic analysis and design of underground structures[J]. China Civil Engineering Journal, 2008, 41(4): 73-80. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.04.011

    [5] 刘晶波, 刘祥庆, 薛颖亮. 地下结构抗震分析与设计的Pushover方法适用性研究[J]. 工程力学, 2009, 26(1): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200901018.htm

    LIU Jing-bo, LIU Xiang-qing, XUE Ying-liang. Study on applicability of a pushover analysis method for seismic analysis and design of underground structures[J]. Engineering Mechanics, 2009, 26(1): 49-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200901018.htm

    [6] 刘晶波, 王文晖, 赵冬冬, 等. 循环往复加载的地下结构Pushover分析方法及其在地震损伤分析中的应用[J]. 地震工程学报, 2013, 35(1): 21-28. doi: 10.3969/j.issn.1000-0844.2013.01.0021

    LIU Jing-bo, WANG Wen-hui, ZHAO Dong-dong, et al. Pushover analysis method of underground structures under reversal load and its application in seismic damage analysis[J]. China Earthquake Engineering Journal, 2013, 35(1): 21-28. (in Chinese) doi: 10.3969/j.issn.1000-0844.2013.01.0021

    [7]

    VAMVATSIKOS D, CORNELL C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491-514. doi: 10.1002/eqe.141

    [8]

    HARIRI-ARDEBILI M, SAOUMA V. Probabilistic seismic demand model and optimal intensity measure for concrete dams[J]. Structure Safety, 2016, 59: 67-85. doi: 10.1016/j.strusafe.2015.12.001

    [9]

    JALAVER F, CORNELL C. Alternative non-linear demand estimation methods for probability-based seismic assessments[J]. Earthquake Engineering and Structural Dynamics, 2009, 38(8): 951-972. doi: 10.1002/eqe.876

    [10] 钟紫蓝, 甄立斌, 申轶尧, 等. 基于耐震时程分析法的地下结构抗震性能评价[J]. 岩土工程学报, 2020, 42(8): 1482-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008019.htm

    ZHONG Zi-lan, ZHEN Li-bin, SHEN Yi-yao, et al. Seismic performance evaluation of underground structures using endurance time analysis[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1482-1490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008019.htm

    [11]

    ESTEKANCHI H E, VAFAI A, SADEGHAZAR M. Endurance time method for seismic analysis and design of structures[J]. Scientia Iranica, 2004, 11(4): 361-370.

    [12]

    ESTEKANCHI H E, VALAMANESH V, VAFAI A. Application of endurance time method in linear seismic analysis[J]. Engineering Structure, 2007, 29(10): 2551-2562. doi: 10.1016/j.engstruct.2007.01.009

    [13] 刘向阳. 增量地震激励分析法的研究与应用[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    LIU Xiang-yang. Research and Application on Structural Dynamic Analysis Using Incremental Earthquake Excitation[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)

    [14]

    VALAMANESH V, ESTEKANCHI H E, VAFAI A. Characteristics of second generation endurance time acceleration functions[J]. Scientia Iranica, 2010, 17(1): 53-61.

    [15] 陈国兴, 庄海洋, 杜修力, 等. 土-地铁车站结构动力相互作用大型振动台模型试验研究[J]. 地震工程与工程振动, 2007, 27(2): 171-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200702026.htm

    CHEN Guo-xing, ZHUANG Hai-yang, DU Xiu-li, et al. Analysis of large shaking table test of dynamic soil-subway station interaction[J]. Earthquake Engineering and Engineering Dynamics, 2007, 27(2): 171-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200702026.htm

    [16] 建筑抗震设计规范:B50011—2010[S]. 2010.

    Code for Seismic Design of Buildings: B50011—2010[S]. 2010. (in Chinese)

    [17]

    YANG Z, ELGAMAL A, PARRA E. Computational model for cyclic mobility and associated shear deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1119-1127.

    [18]

    PARRA-COLMENARES E J. Numerical Modeling of Liquefaction and Lateral Ground Deformation Including Cyclic Mobility and Dilation Response in Soil Systems[D]. Corvallis: Oregon State University, 1996.

    [19]

    Minimum Design Loads for Buildings and Other Structures: ASCE/SEI 7-10[S]. 2011.

    [20] 潘超, 张瑞甫. EQSignal:地震波处理与生成工具[CP/OL]. 

    PAN Chao, ZHANG Rui-fu. A useful tool to process and generate earthquake signals[CP/OL].  (in Chinese)

    [21]

    PAN C, ZHANG R, LUO H, et al. Target-based algorithm for baseline correction of inconsistent vibration signals[J]. Journal of Vibration and Control, 2017, 24(12): 2562-2575.

    [22]

    ARIAS A. A Measure of Earthquake Intensity. Seismic Design of Nuclear Power Plants[M]. Cambridge MA: MIT Press, 1970.

    [23] 钟紫蓝, 申轶尧, 甄立斌, 等. 地震动强度参数与地铁车站结构动力响应指标分析[J]. 岩土工程学报, 2019, 42(3): 486-494. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003014.htm

    ZHONG Zi-lan, SHEN Yi-yao, ZHEN Li-bin, et al. Ground motion intensity measures and dynamic response indexes of metro station structures[J]. Chinese Journal of Geotechnical Engineering, 2019, 42(3): 486-494. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003014.htm

  • 期刊类型引用(2)

    1. 胡伟,林天宇,林志,冯世进,IVAN Puig Damians. 砂土地基中螺旋锚上拔承载特性试验与理论研究. 岩土工程学报. 2024(08): 1582-1595 . 本站查看
    2. 李姝雨,邹润超,俞快,原媛,史旦达. 松砂中倾斜锚板上拔承载特性模型试验研究. 水资源与水工程学报. 2023(04): 199-208 . 百度学术

    其他类型引用(1)

图(10)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-08-30
  • 网络出版日期:  2022-12-04
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回