Optimal duration of endurance time acceleration functions for shallow buried underground structures
-
摘要: 为研究持时对地下结构耐震时程分析结果的影响,选取II类和III类工程场地中典型的两层三跨地铁车站为原型,以基岩场地地震动均值反应谱为目标谱,构造了6种典型持时的耐震加速度时程曲线作为输入。通过将耐震分析结果与增量动力分析基准结果对比表明,耐震加速度时程曲线的持时对分析结果影响显著。根据目标时间点与地震动能量指标阿里亚斯强度值的变化规律,给出了最优目标时间点的确定公式并进行验证。由研究结果可知,对于II和III类工程场地,耐震时程曲线较优持时分别为30 s和45 s;给出的目标时间点的确定公式对上述两类场地中的地下结构抗震性能评价具有一定适用性,当构造的耐震时程曲线在目标时间区段内的能量值与实际地震动的能量值较为接近时,耐震时程分析结果最为精确。Abstract: The effects of duration of the endurance time analysis on the seismic response of the underground structures are investigated. The typical two-story three-span subway station embedded in the sites of classes II and III is used as the prototype. The response spectra at the engineering bedrock is used as the target ones to develop six endurance time acceleration functions as the input motions for the nonlinear soil-structure interaction system. Using the results from the incremental dynamic analysis as the reference, the effects of time duration of the endurance time analysis on the seismic analysis of underground structures are significant. A formula to compute the optimal time duration based on the variations of earthquake ground motion energy measure, Arias intensity, with the target time is proposed and validated. It can be seen from the numerical results that endurance time acceleration functions with durations of 30 and 45 s are more favorable for the underground structures embedded in the sites of classes II and III, respectively. Moreover, the proposed formula for the optimal duration estimation is feasible for the seismic performance evaluation of underground structures in the above two site classes. The results from the endurance time analysis are more accurate when the total energy in the artificial endurance time acceleration function is close to the actual earthquake records.
-
-
表 1 Ⅱ类场地土层物理参数表
Table 1 Physical parameters of site class II soil
土层 类别 厚度/m 密度ρ/(t·m-3) 剪切波速Vs/(m·s-1) 黏聚力c/kPa 摩擦角φ/(°) 1 人工填土 4.0 1.90 180 20.0 12.0 2 粉质黏土 4.0 1.90 230 30.0 20.0 3 细中砂 17.0 2.00 300 1.0 35.0 4 细粉砂 15.0 2.00 320 1.0 35.0 5 粗砂 20.0 2.23 380 1.0 35.0 表 2 Ⅲ类场地土层物理参数表
Table 2 Physical parameters of site class III soil
土层 类别 厚度/m 密度ρ/(t·m-3) 剪切波速Vs/(m·s-1) 黏聚力c/kPa 摩擦角φ/(°) 1 淤泥质土 5.5 1.90 120 13.5 12.0 2 淤泥粉质黏土 16.5 1.90 160 15.0 12.0 3 粉细砂 17.0 1.90 205 1.0 35.0 4 黏土 21.0 2.02 263 20.0 20.0 表 3 不同持时耐震加速度时程参数
Table 3 Parameters of different durations of ETAFs
参数 15 s 30 s 45 s 60 s 75 s 90 s 全时程PGA 1.16 1.24 1.26 1.24 1.25 1.21 0~tTarget间PGA 0.41 0.37 0.42 0.39 0.40 0.39 全时程IA值 2.07 3.32 4.79 5.90 6.61 7.32 0~tTarget间IA值 0.11 0.16 0.21 0.25 0.29 0.32 表 4 不同持时ETA结果与IDA结果拟合参数汇总
Table 4 Summary of fitting parameters of ETA results at different durations and IDA results
参数 场地 15 s 30 s 45 s 60 s 75 s 90 s 斜率b II 0.942 1.0290 0.9730 1.040 1.182 1.234 III 1.085 1.1800 0.9730 1.456 1.166 1.436 均方根σ II 0.109 0.0740 0.0940 0.082 0.170 0.163 III 0.350 0.3730 0.1990 0.947 0.963 0.983 效率ξ II 0.006 0.0021 0.0030 0.003 0.031 0.038 III 0.030 0.0670 0.0054 0.431 0.160 0.428 -
[1] 杜修力, 马超, 路德春, 等. 大开地铁车站地震破坏模拟与机理分析[J]. 土木工程学报, 2017, 50(1): 53-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm DU Xiu-li, MA Chao, LU De-chun, et al. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads[J]. China Civil Engineering Journal, 2017, 50(1): 53-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201701007.htm
[2] 李田彬. 汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J]. 工程地质学报, 2008, 16(6): 742-750. doi: 10.3969/j.issn.1004-9665.2008.06.003 LI Tian-bin. Failure characteristics and influence factor analysis of mountain tunnels at epicenter zones of great Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 742-750. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.06.003
[3] SEAOC. Performance Based Seismic Engineering of buildings[R]. Version 2000 Committee. Sacramento: Structural Engineers Association of California, 1995.
[4] 刘晶波, 刘祥庆, 李彬. 地下结构抗震分析与设计的Pushover分析方法[J]. 土木工程学报, 2008, 41(4): 73-80. doi: 10.3321/j.issn:1000-131X.2008.04.011 LIU Jing-bo, LIU Xiang-qing, LI Bin. A pushover analysis method for seismic analysis and design of underground structures[J]. China Civil Engineering Journal, 2008, 41(4): 73-80. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.04.011
[5] 刘晶波, 刘祥庆, 薛颖亮. 地下结构抗震分析与设计的Pushover方法适用性研究[J]. 工程力学, 2009, 26(1): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200901018.htm LIU Jing-bo, LIU Xiang-qing, XUE Ying-liang. Study on applicability of a pushover analysis method for seismic analysis and design of underground structures[J]. Engineering Mechanics, 2009, 26(1): 49-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200901018.htm
[6] 刘晶波, 王文晖, 赵冬冬, 等. 循环往复加载的地下结构Pushover分析方法及其在地震损伤分析中的应用[J]. 地震工程学报, 2013, 35(1): 21-28. doi: 10.3969/j.issn.1000-0844.2013.01.0021 LIU Jing-bo, WANG Wen-hui, ZHAO Dong-dong, et al. Pushover analysis method of underground structures under reversal load and its application in seismic damage analysis[J]. China Earthquake Engineering Journal, 2013, 35(1): 21-28. (in Chinese) doi: 10.3969/j.issn.1000-0844.2013.01.0021
[7] VAMVATSIKOS D, CORNELL C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491-514. doi: 10.1002/eqe.141
[8] HARIRI-ARDEBILI M, SAOUMA V. Probabilistic seismic demand model and optimal intensity measure for concrete dams[J]. Structure Safety, 2016, 59: 67-85. doi: 10.1016/j.strusafe.2015.12.001
[9] JALAVER F, CORNELL C. Alternative non-linear demand estimation methods for probability-based seismic assessments[J]. Earthquake Engineering and Structural Dynamics, 2009, 38(8): 951-972. doi: 10.1002/eqe.876
[10] 钟紫蓝, 甄立斌, 申轶尧, 等. 基于耐震时程分析法的地下结构抗震性能评价[J]. 岩土工程学报, 2020, 42(8): 1482-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008019.htm ZHONG Zi-lan, ZHEN Li-bin, SHEN Yi-yao, et al. Seismic performance evaluation of underground structures using endurance time analysis[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1482-1490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008019.htm
[11] ESTEKANCHI H E, VAFAI A, SADEGHAZAR M. Endurance time method for seismic analysis and design of structures[J]. Scientia Iranica, 2004, 11(4): 361-370.
[12] ESTEKANCHI H E, VALAMANESH V, VAFAI A. Application of endurance time method in linear seismic analysis[J]. Engineering Structure, 2007, 29(10): 2551-2562. doi: 10.1016/j.engstruct.2007.01.009
[13] 刘向阳. 增量地震激励分析法的研究与应用[D]. 哈尔滨: 哈尔滨工业大学, 2017. LIU Xiang-yang. Research and Application on Structural Dynamic Analysis Using Incremental Earthquake Excitation[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
[14] VALAMANESH V, ESTEKANCHI H E, VAFAI A. Characteristics of second generation endurance time acceleration functions[J]. Scientia Iranica, 2010, 17(1): 53-61.
[15] 陈国兴, 庄海洋, 杜修力, 等. 土-地铁车站结构动力相互作用大型振动台模型试验研究[J]. 地震工程与工程振动, 2007, 27(2): 171-176. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200702026.htm CHEN Guo-xing, ZHUANG Hai-yang, DU Xiu-li, et al. Analysis of large shaking table test of dynamic soil-subway station interaction[J]. Earthquake Engineering and Engineering Dynamics, 2007, 27(2): 171-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200702026.htm
[16] 建筑抗震设计规范:B50011—2010[S]. 2010. Code for Seismic Design of Buildings: B50011—2010[S]. 2010. (in Chinese)
[17] YANG Z, ELGAMAL A, PARRA E. Computational model for cyclic mobility and associated shear deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1119-1127.
[18] PARRA-COLMENARES E J. Numerical Modeling of Liquefaction and Lateral Ground Deformation Including Cyclic Mobility and Dilation Response in Soil Systems[D]. Corvallis: Oregon State University, 1996.
[19] Minimum Design Loads for Buildings and Other Structures: ASCE/SEI 7-10[S]. 2011.
[20] 潘超, 张瑞甫. EQSignal:地震波处理与生成工具[CP/OL]. PAN Chao, ZHANG Rui-fu. A useful tool to process and generate earthquake signals[CP/OL]. (in Chinese)
[21] PAN C, ZHANG R, LUO H, et al. Target-based algorithm for baseline correction of inconsistent vibration signals[J]. Journal of Vibration and Control, 2017, 24(12): 2562-2575.
[22] ARIAS A. A Measure of Earthquake Intensity. Seismic Design of Nuclear Power Plants[M]. Cambridge MA: MIT Press, 1970.
[23] 钟紫蓝, 申轶尧, 甄立斌, 等. 地震动强度参数与地铁车站结构动力响应指标分析[J]. 岩土工程学报, 2019, 42(3): 486-494. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003014.htm ZHONG Zi-lan, SHEN Yi-yao, ZHEN Li-bin, et al. Ground motion intensity measures and dynamic response indexes of metro station structures[J]. Chinese Journal of Geotechnical Engineering, 2019, 42(3): 486-494. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003014.htm
-
期刊类型引用(2)
1. 胡伟,林天宇,林志,冯世进,IVAN Puig Damians. 砂土地基中螺旋锚上拔承载特性试验与理论研究. 岩土工程学报. 2024(08): 1582-1595 . 本站查看
2. 李姝雨,邹润超,俞快,原媛,史旦达. 松砂中倾斜锚板上拔承载特性模型试验研究. 水资源与水工程学报. 2023(04): 199-208 . 百度学术
其他类型引用(1)