In-situ tests on quantitative evaluation of rock mass integrity based on drilling process index
-
摘要: 钻孔过程中钻具实时响应特征蕴藏着大量工程地质信息,通过解译钻进数据定量评价岩体完整性,可为快速获取工程岩体的地质特征提供新途径。采用高精度数字液压、扭矩、转速和激光位移传感器监测地质钻机传动部位,搭建了新型地质钻机数字钻进监测系统。开展了均质材料和裂隙岩体原位钻进试验,根据实时、连续及同步获取的钻具响应特征参数,建立了钻进压力、钻进扭矩、钻头转速和钻进速度的函数关系。在此基础上,滤除钻机机械参数对钻进速度的影响,提出了用于表达岩体完整性的新指标——钻进过程指数。研究发现,钻进过程指数的数字变化趋势能综合反映岩体的破碎程度,能通过信息化方法和数据运算获取岩体完整性,削减了人工统计RQD和编纂岩芯柱状素描图等繁杂的工序,还降低了人为主观因素的不利影响。Abstract: The real-time response characteristics of drilling tools contain important engineering geological information. By interpreting the drilling data, the rock mass integrity can be quantitatively evaluated, which provides a new way to quickly obtain the geological characteristics of engineering rock mass. A new type of digital geological drilling monitoring system is established by using the high-precision digital hydraulic, torque, rotational speed and laser displacement sensors to monitor the transmission part of geological drill. Based on the real-time, continuous and synchronous drilling response characteristic parameters of drilling tools, the functional relationships among drilling thrust, rotational torque, rotational speed and drilling rate are established. On this basis, the influences of drilling machine parameters on drilling rate are filtered out, and a new index, drilling process index, is proposed to express the rock mass integrity. The digital change of the drilling process index can comprehensively reflect the fragmentation degree of rock mass, and the rock mass integrity can be obtained through the information method and data operation. The complicated procedures such as statistical work of RQD and drillingcore sketch are reduced, and the adverse influences of human subjective factors are also reduced.
-
Keywords:
- rock mass integrity /
- geological drill /
- drilling process index /
- drilling rate /
- in-situ test
-
-
表 1 均质材料钻进试验结果
Table 1 Drilling test results of homogeneous materials
编号 N/(rev·s-1) F/kN M/(N·m-1) S/mm T/s V/(mm·s-1) A1 0.67 9.3 75.87 251.34 354 0.71 A2 0.67 11.5 92.59 252.75 337 0.75 A3 0.67 19.3 100.21 265.92 277 0.96 A4 0.67 28.8 119.40 260.91 223 1.17 A5 0.67 35.7 135.62 248.92 196 1.27 A6 0.67 41.3 153.17 239.94 186 1.29 A7 0.67 45.5 194.11 265.22 149 1.78 A8 0.67 51.6 184.27 258.44 142 1.82 A9 0.67 60.4 198.10 259.86 122 2.13 A10 0.67 66.2 224.30 170.04 78 2.18 B1 1.92 8.5 68.62 245.96 143 1.72 B2 1.92 19.3 96.66 266.40 120 2.22 B3 1.92 23.5 115.26 271.20 120 2.26 B4 1.92 29.3 119.63 226.54 94 2.41 B5 1.92 35.8 140.94 263.68 103 2.56 B6 1.92 42 165.21 252.01 79 3.19 B7 1.92 46.5 166.01 264.60 70 3.78 B8 1.92 53.1 186.22 252.72 72 3.51 B9 1.92 58.2 193.7 237.25 65 3.65 B10 1.92 60.5 211.73 199.92 68 2.94 C1 3.67 9.7 73.66 235.47 141 1.67 C2 3.67 18.3 99.04 236.71 90 2.63 C3 3.67 29.0 120.11 284.00 80 3.55 C4 3.67 34.9 138.58 241.68 57 4.24 C5 3.67 40.2 142.66 264.24 72 3.67 C6 3.67 46.7 172.63 246.62 59 4.18 C7 3.67 51.5 192.12 211.19 49 4.31 C8 3.67 57.5 200.30 178.02 43 4.14 D1 6.67 8.5 69.01 255.06 117 2.18 D2 6.67 11.5 79.32 263.61 101 2.61 D3 6.67 18.8 99.36 265.68 81 3.28 D4 6.67 25.1 110.88 236.28 66 3.58 D5 6.67 30.4 126.78 247.04 64 3.86 D6 6.67 35.5 143.69 240.30 54 4.45 D7 6.67 42.5 157.99 261.66 42 6.23 D8 6.67 48.8 175.45 231.65 41 5.65 D9 6.67 53.6 195.36 202.02 37 5.46 表 2 DPI和岩体完整性的关系
Table 2 Relationship between DPI and rock mass integrity
岩体完整性 完整 块体状 破碎或空洞 DPI 0<DPI≤2 2<DPI≤3 3<DPI -
[1] HOEK E. Strength of jointed rock masses[J]. Géotechnique, 2015, 33(3): 187-223.
[2] ANDO M. Geological and geophysical studies of the Nojima fault from drilling: an outline of the Nojima fault zone probe[J]. The Island Arc, 2001, 10(3/4): 206-214.
[3] FILLION M H, HADJIGEORGIOU J. Quantifying influence of drilling additional boreholes on quality of geological model[J]. Canadian Geotechnical Journal, 2009, 56: 347-363.
[4] OLSON L, SAMSON C, MCKINNON SD. 3-D laser imaging of drill core for fracture detection and rock quality designation[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 73: 156-164. doi: 10.1016/j.ijrmms.2014.11.004
[5] SARICAM T, OZTURK H. Estimation of RQD by digital image analysis using a shadow-based method[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 253-265. doi: 10.1016/j.ijrmms.2018.10.032
[6] YUE Z Q, LEE C F, LAW K T, et al. Automatic monitoring of rotary percussive drilling for ground characterization illustrated by a case example in Hong Kong[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(4): 573-612. doi: 10.1016/j.ijrmms.2003.12.151
[7] TEALE R. The concept of specific energy in rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1965, 2(2): 57-73.
[8] HUGHES H M. Some aspects of rock machining[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1972, 9(2): 205-211.
[9] DETOURNAY E, DEFOURNY E. A phenomenological model for the drilling action of drag bits[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(1): 13-23.
[10] YAGIZ S. Assessment of brittleness using rock strength and density with punch penetration test[J]. Tunnelling and Underground Space Technology, 2009, 24(1): 66-74. doi: 10.1016/j.tust.2008.04.002
[11] JANTUNEN E. A summary of methods applied to tool condition monitoring in drilling[J]. International Journal of Machine Tools and Manufacture, 2002, 42(9): 997-1010. doi: 10.1016/S0890-6955(02)00040-8
[12] BARTON NR, LIEN R, LUNDE J. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics and Rock Engineering, 1974, 6(4): 189-236.
[13] 许宏发, 陈锋, 王斌魏, 等. 岩体分级BQ与RMR的关系及其力学参数估计[J]. 岩土工程学报, 2014, 36(1): 195-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401027.htm XU Hong-fa, CHEN Feng, WANG Bin-wei, et al. Relationship between RMR and BQ for rock mass classification and estimation of its mechanical parameters[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 195-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401027.htm
[14] HOEK E, MARINOS P, BENISSI M. Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses: The case of Athens schist formation[J]. Bulletin of Engineering Geology and Environment, 1998, 57: 151-160. doi: 10.1007/s100640050031
[15] SCHUNNESSON . The drillability assessment of rocks using the different brittleness values[J]. Tunnelling & Underground Space Technology, 1996, 11(3): 345-351.
[16] GUI M W, SOGA K, BOLTON M D, et al. Instrumented borehole drilling for subsurface investigation[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(4): 283-291.
[17] SAEIDI O, TORABI SR, ATAEI M. Development of a new index to assess the rock mass drillability[J]. Geotechnical and Geological Engineering, 2013, 31(5): 1477-1495.
[18] 刘建民, 曹治国. 考虑钻孔速率的公路隧道围岩类别超前分类研究[J]. 公路交通科技, 2007, 24(5): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200705022.htm LIU Jian-min, CAO Zhi-guo. Study of surrounding rock stability classification considering drilling rock rate[J]. Journal of Highway and Transportation Research and Development, 2007, 24(5): 99-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200705022.htm
[19] 邱道宏, 李术才, 薛翊国, 等. 基于数字钻进技术和量子遗传-径向基函数神经网络的围岩类别超前识别技术研究[J]. 岩土力学, 2014, 35(7): 2013-2018. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407035.htm QIU Dao-hong, LI Shu-cai, XUE Yi-guo, et al. Advanced prediction of surrounding rock classification based on digital drilling technology and QGA-RBF neural network[J]. Rock and Soil Mechanics, 2014, 35(7): 2013-2018. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407035.htm
[20] 田昊, 李术才, 薛翊国, 等. 基于钻进能量理论的隧道凝灰岩地层界面识别及围岩分级方法[J]. 岩土力学, 2012, 33(8): 2457-2464. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201208035.htm TIAN Hao, LI Shu-cai, XUE Yi-guo, et al. Identification of interface of tuff stratum and classfication of surrounding rock of tunnel using drilling energy theory[J]. Rock and Soil Mechanics, 2012, 33(8): 2457-2464. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201208035.htm
[21] 谭卓英, 蔡美峰, 岳中琦, 等. 钻进参数用于香港复杂风化花岗岩地层的界面识别[J]. 岩石力学与工程学报, 2006, 25(增刊1): 2939-2945. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1050.htm TAN Zhuo-ying, CAI Mei-feng, YUE Zhong-qi, et al. Interface identification of intricate weathered granite ground investigation in Hong Kong using drilling parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 2939-2945. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1050.htm
[22] YARALI O, KAHRAMAN S. The drillability assessment of rocks using the different brittleness values[J]. Tunnelling and Underground Space Technology, 2011, 26(2): 406-414.
[23] DARBOR M, FARAMARZI L, SHARIFZADEH M. Performance assessment of rotary drilling using non-linear multiple regression analysis and multilayer perceptron neural network[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 1501-1513.
[24] 岳中琦. 钻孔过程监测(DPM)对工程岩体质量评价方法的完善与提升[J]. 岩石力学与工程学报, 2014, 33(10): 1977-1996. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201410005.htm YUE Zhong-qi. Drilling process monitoring for refining and upgrading rock mass quality classification methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 1977-1996. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201410005.htm
[25] RU Z L, ZHAO H B, ZHU C X. Probabilistic evaluation of drilling rate index based on a least square support vector machine and Monte Carlo simulation. Bulletin of Engineering Geology and the Environment[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 3111-3118.
[26] KALANTARI S, BAGHBANAN A, HASHEMALHOSSEINI H. An analytical model for estimating rock strength parameters from small-scale drilling data[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(1): 139-149.
[27] WANG Q, GAO H, JIANG B, et al. Research on an evaluation method for the strength of broken coal mass reinforced by cement slurry based on digital drilling test technology[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 4599-4609.
[28] HARRISON J P. Selection of the threshold value in RQD assessments[J]. International Journal of Rock Mechanics & Mining Sciences, 1999, 36(5): 673-685.