Shear creep characteristics of red sandstone after freeze-thaw with different water contents
-
摘要: 针对高海拔地区岩体在冻融作用及含水状态下的劣化特征及长期稳定性,对不同含水率红砂岩进行了冻融后核磁共振检测及剪切蠕变试验,揭示了冻融循环及含水率变化对红砂岩细观结构及蠕变特性的影响机制,据此构建合理的剪切蠕变模型。研究结果表明:在冻融作用下,饱水红砂岩呈现出由小尺寸孔隙增长向中小尺寸孔隙共同增长的趋势,而饱和红砂岩主要以中、大孔隙增长为主。在长期荷载作用下,随着含水率的增加,冻融后红砂岩的蠕变量普遍增大,而长期强度及长期折减系数显著降低,破坏前试样更易出现加速蠕变特征,破坏后试样宏观形态更为碎裂。根据红砂岩的冻融损伤及时效性损伤效应,建立了红砂岩冻融剪切蠕变模型,并对模型进行了参数优化辨识,借此验证了模型的正确性及合理性。研究结果对于冻融岩质灾害的防控和评价具有参考价值。Abstract: According to the deterioration characteristics and long-term stability of rock mass in high altitude under the action of freeze-thaw and in water-saturated state, the nuclear magnetic resonance (NMR) technique is used to test the red sandstone samples subjected to freeze-thaw cycles under different water contents, and the shear creep experiments are conducted. Based on the experimental phenomena, the effects of freeze-thaw cycles and water content on the microstructure and creep characteristics of red sandstone are analyzed, and a reasonable creep model is proposed. The results show that the microstructure of wet red sandstone evolves from the main increase of small-size pore to the mutual increase of small-size pore and mesopore with the increasing freeze-thaw cycles, while the mesopore and macropore propagate mainly inside the saturated red sandstone. With the increase of water content, the creep strain of red sandstone generally increases, while the long-term strength and long-term reduction coefficient decrease significantly, the accelerated creep characteristics of red sandstone appear more easily before rock failure, and the macroscopic modes become more fragmented after rock failure. Considering the effects of freeze-thaw damage and time-dependent damage, a new shear creep model for red sandstone subjected to freeze-thaw cycles is established. The parameters of the model are identified by applying the 1stOpt mathematical analysis software, and the correctness and rationality of the model are verified. The research results have reference value for the prevention and evaluation of rock disasters in cold regions.
-
Keywords:
- shear creep /
- water content /
- freeze-thaw /
- red sandstone /
- constitutive model
-
0. 引言
各向异性是黏土的基本性质之一,分为原生各向异性和次生各向异性。针对原生各向异性对黏土力学性状的影响,许多学者对与沉积平面呈不同夹角试样进行压缩、无侧限压缩和三轴压缩等试验,发现原生各向异性对黏土变形以及强度特性的影响不容忽视。
小应变剪切模量特性作为土的重要力学性质之一,也同样受到原生各向异性的影响。Simpson等[1]的研究表明,小应变剪切模量的原生各向异性对隧道及基坑周围土体变形的预测结果影响很大;Jovičić等[2]和吴宏伟等[3]分别针对伦敦黏土和上海软黏土进行研究,利用弯曲元测得两种土在低围压下水平和竖直方向上的最大剪切模量比值分别为1.5和1.21,说明对于不同种类黏土,原生各向异性对其小应变剪切模量的影响不尽相同。
结构性黏土在我国东南沿海地区分布广泛,许多工程建设涉及到此类黏土,迄今已对其小应变剪切模量进行了诸多研究,但以往的研究主要考虑孔隙比、应力水平和结构损伤等对小应变剪切模量的影响[4],而考虑原生各向异性对小应变剪切模量影响的研究较少,有必要进行系统探究。
本文对不同削样方向的湛江黏土原状试样开展不同围压下的共振柱试验,研究原生各向异性对最大动剪切模量的影响以及考虑原生各向异性的最大动剪切模量随围压演化规律的表征方法。
1. 试验材料与试验方案
1.1 试验材料与试样制备
土样取自湛江市某基坑内地下10~11 m,尺寸为30 cm×30 cm×30 cm原状块状样。表1为其基本物理力学指标与颗粒组成。由表1可见,湛江黏土具有较差物理性质,与软黏土相似,但力学性质较优,呈现上述特性的原因为其具有的强结构性[4]。
表 1 湛江黏土平均物理力学性质指标与颗粒组成Table 1. Physical and mechanical indexes and particle composition of Zhanjiang clay重度γ/(kN·m-3) 含水率w/% 孔隙比e 渗透系数K/(cm·s-1) 液限wL/% 塑限wP/% 塑性指数IP 结构屈服应力σk/kPa 无侧限抗压强度/kPa 灵敏度St 颗粒组成/% >0.05/mm 0.005~0.05/mm 0.002~0.005/mm <0.002/mm 17.1 52.98 1.44 2.73×10−8 59.6 28.1 31.5 400 143.5 7.2 8.2 39.5 20.7 31.6 图1(a)为不同方向圆柱试样示意图,定义试样轴线与土体沉积平面夹角为
α ,即竖直方向试样为90°,水平方向试样为0°。针对α 为0°,22.5°,45°,67.5°,90°方向原状样进行研究,试样规格尺寸为直径50 mm,高度100 mm的圆柱体。1.2 试验方法
试验所用设备为GDS共振柱仪,如图1(b)所示。试样的边界条件为一端固定,一端自由。通过电磁驱动系统对试样逐级施加扭矩,测得试样的共振频率和对应的剪应变,试样动剪切模量由下式得到:
G=ρ(2πfH/β)2, (1) 式中,G为试样动剪切模量,ρ为试样密度,f为共振频率,H为试样高度,β为扭转振动频率方程特征值。
试样在抽气饱和后安装至共振柱仪上,随后进行反压饱和,当B值达0.98后,进行固结,围压分别设定为50,100,200,300,400,500,600,700,800 kPa。试样固结完成后,进行共振柱试验。
2. 试验结果与分析
2.1 不同方向试样G-
γ 曲线规律如图2所示,不同方向试样动剪切模量G和剪应变
γ 的关系曲线形态与规律类似。剪切模量在小剪应变下衰减速度较小;随剪应变发展,衰减速度增大。低围压下G-γ 曲线随围压增大而上移,围压超过600~700 kPa,G-γ 曲线随围压增长而下移,与通常软黏土G-γ 曲线大多随围压增大而单调上移规律存在明显差异,说明结构性对湛江黏土G-γ 曲线规律影响较大。2.2 原生各向异性对最大动剪切模量的影响
湛江黏土动应力-应变关系可用Hardin-Drnevich双曲线模型表征,如下式:
τ=γa+bγ, (2) 式中,a,b为拟合参数。式(2)可以写为
1/G=a+bγ。 (3) 式(3)中,当
γ 趋近于0时,得到最大动剪切模量Gmax=1/a,利用式(3)求得不同方向试样在各围压下的Gmax。为了消除孔隙比对Gmax的影响,引入孔隙比函数F(e)=1/(0.3+0.7e2)将Gmax进行归一化处理,图3为经孔隙比函数归一化的Gmax/F(e)-围压σ3 曲线。随围压增大,不同方向试样Gmax/F(e)-σ3 曲线均呈现先上升后下降的规律,在围压为400~500 kPa即在σk 左右时,曲线出现转折。为了更好描述原生各向异性对最大动剪切模量的影响,定义Gmax/F(e)的原生各向异性系数:
Kα=Dα/D90°, (4) 式中,Dα定义为α方向试样的Gmax/F(e),D90°定义为90°(竖直)方向试样的Gmax/F(e)。
Gmax/F(e)的原生各向异性系数Kα与围压的关系如图4所示。相同围压下,Kα随方向角
α 变化,Kα整体上随α 增大而减小,即试样的方向越靠近水平其刚度越大,说明原生各向异性对湛江黏土最大动剪切模量Gmax的影响十分显著。湛江黏土基本单元为扁平状片堆、粒状碎屑矿物与单片颗粒,上述基本单元在沉积时,其长轴更倾向于水平方向,导致颗粒间水平方向的接触更紧密,结构更强[3],进而更靠近水平方向试样的刚度更大。当围压低于400~600 kPa时,同一方向试样Kα随围压增长基本保持恒定,K0°,K22.5°,K45°,K67.5°,K90°分别为1.314,1.279,1.148,1.045,1;当围压高于400~600 kPa时,同一方向试样Kα随围压增长呈明显减小趋势,不同方向试样的Gmax/F(e)差异减小。说明围压低于
σk 时,围压的增大几乎不影响原生各向异性对Gmax的影响,但当围压超过σk 后,围压的增大减弱了原生各向异性对Gmax的影响。文献[2]中伦敦黏土在围压超过屈服应力后,其水平与竖直方向试样的最大剪切模量的差异随围压增长也呈减小趋势,与本文试验结果一致。2.3 考虑原生各向异性的最大动剪切模量表征方法
图3中出现Gmax/F(e)随围压增大呈先上升后下降的特殊现象,文献[4]认为Gmax同时受到平均有效应力、孔隙比和结构损伤的影响,采用该文的表征方法对试验结果进行分析,具体的表达形式如下所示:
Gmax/F(e)=A(1+(σ′mpa)n)1+B(1+(σ′mpa)n)(kr+1−kr1+(ησ′mpc)λ)。 (5) 式中 A,B,n,kr,η和
λ 为反映各种应力历史和土体性质的参数;σ′m 为围压;pa为标准大气压;pc为表观前期固结压力即结构屈服应力σk ,不同方向试样压缩试验得到的σk 差异较小,均取400 kPa。采用式(5)将不同方向试样Gmax/F(e)与围压的关系进行定量表征。从图4可得,高应力下各向异性对试样的Gmax/F(e)影响减弱,可假定不同方向试样Gmax/F(e)极限值相同。最终将试验数据与拟合曲线一同绘制于图5,发现拟合效果很好,拟合参数见表2。
表 2 不同方向试样拟合参数Table 2. Fitting parameters of specimens in different directionsα A/MPa B n kr η λ R2 0° 39.92489 0.16678 0.54309 0.35092 0.56433 6.42998 0.99251 22.5° 37.89951 0.15999 0.58264 0.35462 0.56426 6.37147 0.99075 45° 33.76328 0.15168 0.54642 0.37740 0.55402 6.38473 0.99432 67.5° 31.15476 0.15761 0.56254 0.42499 0.60889 6.07737 0.99727 90° 29.75422 0.15743 0.56067 0.44448 0.57750 6.05669 0.99835 分析表2中拟合参数与试样方向的关系,可得参数A,kr,
λ 和试样轴线与土体沉积平面夹角α 呈线性关系(图6),参数B,n,η随α 增大分别保持在0.1587,0.5591,0.5738上下,且波动范围较小(参数B,n,η的标准差S分别为0.005455,0.01570和0.02131)。将图6中参数A,kr,
λ 的拟合方程和参数B,n,η的平均值同时代入式(5),得到考虑原生各向异性的最大动剪切模量的表征方法:Gmax/F(e)=(c1α+c2)(1+(σ′mpa)n)1+B(1+(σ′mpa)n)· ((d1α+d2)+1−(d1α+d2)1+(ησ′mpc)(e1α+e2))。 (6) 式中
σ′m 为围压;α 表示试样的方向,为试样轴线与土体沉积平面夹角;pa为标准大气压,取101.325 kPa;pc为σk ,取400 kPa;B=0.1587,n=0.5591,η=0.5738;c1=−0.1204,c2=39.9166;d1=1.144×10−3,d2=0.3390;e1=−4.625×10−3,e2=6.4722。3. 结论
(1)在同一围压下,不同
α 试样经孔隙比函数归一化的最大动剪切模量Gmax/F(e)与90°方向试样Gmax/F(e)的比值Kα随α 增大而减小。当围压低于和高于σk 时,同一α 试样Kα随围压增长分别呈基本保持恒定与明显减小趋势,说明当围压低于σk 时,围压几乎不影响原生各向异性对Gmax影响,围压超过σk 后,不同方向的Gmax/F(e)差异减小,围压的增大减弱了原生各向异性对Gmax的影响。(2)受固结压硬和结构损伤的影响,湛江黏土的Gmax/F(e)变化规律与通常软黏土试验结果不同,不同方向试样的Gmax/F(e)随围压增大均呈先增大后减小规律,当围压在
σk 左右时出现转折。(3)基于采用考虑结构损伤的公式可很好拟合湛江黏土不同方向试样Gmax与围压关系曲线,提出了考虑原生各向异性影响的Gmax演化规律表征方法。
-
表 1 NMR试样T2谱总面积及孔隙率变化
Table 1 Total areas of T2 distribution and NMR porosities of red sandstone samples subjected to freeze-thaw cycles under different water contents
含水率/% 冻融循环次数N/次 T2谱总面积 谱面积变化率/% 孔隙率/% 1.5 30 13014 0 10.28 60 13711 5.36 10.83 90 14915 14.61 11.78 120 17972 38.10 14.19 2.4 30 13189 0 10.92 60 13965 5.88 11.87 90 16372 24.13 13.53 120 20476 55.25 16.14 3.78 30 14885 0 11.75 60 16885 13.44 13.33 90 19974 34.19 15.77 120 27608 85.48 21.80 表 2 不同含水率冻融后红砂岩长期剪切强度及长期折减系数
Table 2 Long-term shear strengths and reduction coefficients of red sandstone samples determined by steady creep rate method
含水率/% 冻融次数N/次 剪切蠕变长期强度τ∞/MPa 剪切蠕变破坏强度τf/MPa 长期折减系数(τ∞/τf) 0 0 41.74 45 0.928 30 41.51 44 0.943 60 33.91 38 0.892 90 29.40 33 0.891 120 28.43 32 0.888 1.5 0 35.77 42 0.852 30 34.48 40 0.862 60 29.46 34 0.866 90 26.02 30 0.867 120 20.31 24 0.846 3.78 0 35.34 41 0.862 30 25.01 30 0.834 60 19.19 24 0.800 90 18.36 24 0.765 120 13.35 18 0.742 表 3 不同含水率冻融0,60和120次后红砂岩剪切蠕变破坏形态
Table 3 Shear creep failure modes of red sandstone samples subjected to freeze-thaw cycles of 0, 60 and 120 under different water contents
含水率/% 冻融0次 冻融60次 冻融120次 断面特征 破坏形态 断面特征 破坏形态 断面特征 破坏形态 0 (干燥) 断面较为平整,断面四周保持较好的完整性 断面较为平整,颗粒间黏聚紧密,边缘出现轻微脱落现象 断面出现小部分面积的起伏,大体还算平整,边缘有轻微碎裂 1.5 (饱水) 断面上残留一部分错动擦痕,擦痕上夹杂着许多细微粉末,断面四周出现小部分脱落。 断面凹凸不平,上部还残留大块松动的颗粒碎片,四周岩块小面积脱落 断面粗糙度相较于冻融60次有所增加,四周岩块脱落面积更大 3.78 (饱和) 断面上粗糙度增加,上部残留着许多细微粉末,断面四周出现小部分脱落。 断面出现多组裂纹贯通,四周岩块大面积脱落 多个劈裂面相互组合,加上四周掉块严重,散碎程度大,成形度低 表 4 不同含水率冻融后红砂岩蠕变模型参数
Table 4 Identified parameters of red sandstone samples
含水率/% 剪应力/MPa Ge /GPaGve /GPaηve /(GPa·h-1)ηvs /(GPa·h-1)m n 1.5 6 0.61 1.68 0.35 — — — 12 1.55 13.81 3.71 — — — 18 1.18 25.22 9.59 — — — 24 2.05 32.55 11.32 15.2 7.6 1.2 3.78 6 0.25 1.47 0.13 — — — 12 1.27 11.6 2.51 — — — 18 1.54 19.75 7.16 8.3 9.8 3.2 -
[1] 李男, 徐辉, 胡斌. 干燥与饱水状态下砂岩的剪切蠕变特性研究[J]. 岩土力学, 2012, 33(2): 439-443. doi: 10.3969/j.issn.1000-7598.2012.02.019 LI Nan, XU Hui, HU Bin. Shear creep characteristics of sandstone under dry and saturated states[J]. Rock and Soil Mechanics, 2012, 33(2): 439-443. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.02.019
[2] 张泽林, 吴树仁, 王涛, 等. 甘肃天水泥岩剪切蠕变行为及其模型研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3603-3617. doi: 10.13722/j.cnki.jrme.2018.1518 ZHANG Ze-lin, WU Shu-ren, WANG Tao, et al. Study on shear creep behavior and its model of mudstone in Tianshui, Gansu Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3603-3617. (in Chinese) doi: 10.13722/j.cnki.jrme.2018.1518
[3] WANG X G, HU B, TANG H M, et al. A constitutive model of granite shear creep under moisture[J]. Journal of Earth Science, 2016, 27(4): 677-685. doi: 10.1007/s12583-016-0709-1
[4] MA C, ZHAN H B, YAO W M, et al. A new shear rheological model for a soft interlayer with varying water content[J]. Water Science and Engineering, 2018, 11(2): 131-138. doi: 10.1016/j.wse.2018.07.003
[5] 杨秀荣, 姜谙男, 江宗斌. 含水状态下软岩蠕变试验及损伤模型研究[J]. 岩土力学, 2018, 39(增刊1): 167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1021.htm YANG Xiu-rong, JIANG An-nan, JIANG Zong-bin. Creep test and damage model of soft rock under water containing condition[J]. Rock and Soil Mechanics, 2018, 39(S1): 167-174. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1021.htm
[6] WANG Y Y, WU Y, FAN X Y, et al. Study of the temperature dependence of the uniaxial creep property of similar material of new soft rock[J]. IOP Conference Series: Earth and Environmental Science, 2017, 93(1): 012022.
[7] HOU R, ZHANG K, TAO J, et al. A nonlinear creep damage coupled model for rock considering the effect of initial damage[J]. Rock Mechanics and Rock Engineering, 2018(2): 1-11.
[8] 王宇, 李建林, 刘锋. 坝基软弱夹层剪切蠕变及其长期强度试验研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3378-3384. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2050.htm WANG Yu, LI Jian-lin, LIU Feng. Experimental research on shear creep and its long-term strength of weak intercalation in dam foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3378-3384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2050.htm
[9] 刘文博, 张树光, 陈雷, 等. 基于统计损伤原理的岩石加速蠕变模型研究[J]. 岩土工程学报, 2020, 42(9): 1696-1704. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009020.htm LIU Wen-bo, ZHANG Shu-guang, CHEN Lei, et al. Accelerated creep model for rock based on statistical damage principle[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1696-1704. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009020.htm
[10] 熊良宵, 虞利军, 杨昌斌. 硬性结构面的剪切流变模型及试验数值分析[J]. 岩石力学与工程学报, 2015, 34(增刊1): 2894-2899. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1037.htm XIONG Liang-xiao, YU Li-jun, YANG Chang-bin. Shear rheological model for hard structural surface and test numerical analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2894-2899. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1037.htm
[11] 杨圣奇, 徐卫亚, 杨松林. 龙滩水电站泥板岩剪切流变力学特性研究[J]. 岩土力学, 2007, 28(5): 895-902. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200705008.htm YANG Sheng-qi, XU Wei-ya, YANG Song-lin. Investigation on shear rheological mechanical properties of shale in Longtan Hydropower Project[J]. Rock and Soil Mechanics, 2007, 28(5): 895-902. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200705008.htm
[12] 杨圣奇, 徐鹏. 一种新的岩石非线性流变损伤模型研究[J]. 岩土工程学报, 2014, 36(10): 1846-1854. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201410016.htm YANG Sheng-qi, XU Peng. A new nonlinear rheological damage model for rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1846-1854. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201410016.htm
[13] 赵延林, 唐劲舟, 付成成, 等. 岩石黏弹塑性应变分离的流变试验与蠕变损伤模型[J]. 岩石力学与工程学报, 2016, 35(7): 1297-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607001.htm ZHAO Yan-lin, TANG Jin-zhou, FU Cheng-cheng, et al. Rheological test of separation between viscoelastic-plastic strains and creep damage model[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1297-1308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607001.htm
[14] 李任杰, 吉锋, 冯文凯, 等. 隐伏非贯通结构面剪切蠕变特性及本构模型研究[J]. 岩土工程学报, 2019, 41(12): 2253-2261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912016.htm LI Ren-jie, JI Feng, FENG Wen-kai, et al. Shear creep characteristics and constitutive model of hidden non-persistent joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 41(12): 2253-2261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912016.htm
[15] 张峰瑞, 姜谙男, 杨秀荣, 等. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002022.htm ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, et al. Study of shear creep experiment and model of granite under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2020, 41(2): 509-519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002022.htm
[16] 申艳军, 杨更社, 荣腾龙, 等. 岩石冻融循环试验建议性方案探讨[J]. 岩土工程学报, 2016, 38(10): 1775-1782. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201610006.htm SHEN Yan-jun, YANG Geng-she, RONG Teng-long, et al. Proposed scheme for freeze-thaw cycle tests on rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1775-1782. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201610006.htm
[17] 沈为. 损伤力学[M]. 武汉: 华中理工大学出版社, 1995. SHEN Wei. Damage Mechanics[M]. Wuhan: Huazhong University of Technology Press, 1995. (in Chinese)
[18] 刘新喜, 李盛南, 周炎明, 等. 高应力泥质粉砂岩蠕变特性及长期强度研究[J]. 岩石力学与工程学报, 2020, 39(1): 138-146. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001014.htm LIU Xin-xi, LI Sheng-nan, ZHOU Yan-ming, et al. Study on creep behavior and long-term strength of argillaceous siltstone under high stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 138-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001014.htm
[19] 马芹永, 郁培阳, 袁璞. 干湿循环对深部粉砂岩蠕变特性影响的试验研究[J]. 岩石力学与工程学报, 2018, 37(3): 593-600. MA Qin-yong, YU Pei-yang, YUAN Pu. Experimental study on creep properties of deep siltstone under cyclic wetting and drying[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 593-600. (in Chinese)
-
期刊类型引用(2)
1. 高志傲,孔令伟,王双娇,黄珏皓,赵浩武. 循环荷载下不同裂隙方向饱和原状膨胀土动力特性试验研究. 岩土工程学报. 2025(04): 736-748 . 本站查看
2. 简涛,孔令伟,柏巍,王俊涛,刘炳恒. 含水率对原状黄土小应变剪切模量影响的试验研究. 岩土工程学报. 2022(S1): 160-165 . 本站查看
其他类型引用(1)