Shear creep characteristics of red sandstone after freeze-thaw with different water contents
-
摘要: 针对高海拔地区岩体在冻融作用及含水状态下的劣化特征及长期稳定性,对不同含水率红砂岩进行了冻融后核磁共振检测及剪切蠕变试验,揭示了冻融循环及含水率变化对红砂岩细观结构及蠕变特性的影响机制,据此构建合理的剪切蠕变模型。研究结果表明:在冻融作用下,饱水红砂岩呈现出由小尺寸孔隙增长向中小尺寸孔隙共同增长的趋势,而饱和红砂岩主要以中、大孔隙增长为主。在长期荷载作用下,随着含水率的增加,冻融后红砂岩的蠕变量普遍增大,而长期强度及长期折减系数显著降低,破坏前试样更易出现加速蠕变特征,破坏后试样宏观形态更为碎裂。根据红砂岩的冻融损伤及时效性损伤效应,建立了红砂岩冻融剪切蠕变模型,并对模型进行了参数优化辨识,借此验证了模型的正确性及合理性。研究结果对于冻融岩质灾害的防控和评价具有参考价值。Abstract: According to the deterioration characteristics and long-term stability of rock mass in high altitude under the action of freeze-thaw and in water-saturated state, the nuclear magnetic resonance (NMR) technique is used to test the red sandstone samples subjected to freeze-thaw cycles under different water contents, and the shear creep experiments are conducted. Based on the experimental phenomena, the effects of freeze-thaw cycles and water content on the microstructure and creep characteristics of red sandstone are analyzed, and a reasonable creep model is proposed. The results show that the microstructure of wet red sandstone evolves from the main increase of small-size pore to the mutual increase of small-size pore and mesopore with the increasing freeze-thaw cycles, while the mesopore and macropore propagate mainly inside the saturated red sandstone. With the increase of water content, the creep strain of red sandstone generally increases, while the long-term strength and long-term reduction coefficient decrease significantly, the accelerated creep characteristics of red sandstone appear more easily before rock failure, and the macroscopic modes become more fragmented after rock failure. Considering the effects of freeze-thaw damage and time-dependent damage, a new shear creep model for red sandstone subjected to freeze-thaw cycles is established. The parameters of the model are identified by applying the 1stOpt mathematical analysis software, and the correctness and rationality of the model are verified. The research results have reference value for the prevention and evaluation of rock disasters in cold regions.
-
Keywords:
- shear creep /
- water content /
- freeze-thaw /
- red sandstone /
- constitutive model
-
0. 引言
在水利工程建设与湖泊、河道的清淤疏浚过程中会产生大量的高含水率疏浚淤泥。在工程上因其力学性质差难以直接利用,通常进行抛泥处理,造成大量的资源浪费和严重的环境污染。水泥固化法处理高含水率淤泥,在填海工程中被大量使用[1]。在水泥固化土的研究中,有学者就水泥固化土强度影响参数方面展开了研究,也有学者为提高水泥土材料的力学特性,研究了掺入其它材料的影响[2-4]。
另一方面,中国每年产生的废弃砖块约占建筑垃圾总量的30%~50%。关于废砖细骨料再生研究中,Letelier等[5]利用再生骨料和废砖粉作为水泥替代品,研究了结构混凝土的力学性能。Kumar等[6]利用废砖细骨料、混凝土细骨料和pozzol烷材料制备砌块,测试了砌块养护28 d后湿压强度、吸水率和吸湿率等特性。中国目前仍存在建筑垃圾排放量大,回收利用率低等问题[7]。
在疏浚土等不良土的处理方法中,还可掺混不同粒径的砂土,通过改变粒径级配达到改善不良土力学特性的目的[8]。基于此,本文在传统水泥固化土方法基础上提出用水泥-废砖细骨料双掺固化处理高含水率黏土的方法,通过测定不同龄期和不同配合比试样的无侧限抗压强度,分析了双掺固化土的应力-应变关系、抗压强度-破坏应变关系及废砖细骨料的掺入对强度的影响。
1. 试验材料与方法
1.1 试验材料
(1)通过预试验确定本试验所用细骨料的粒径范围为2~5 mm,密度1.306 g/cm3,吸水率为10.57%。
(2)所取原状土的物理力学性质指标见表1,通过加入水使其达到本文所设计的含水率72.4%。
表 1 黏土的物理力学性质指标Table 1. Physical and mechanical properties of clay含水率/% 孔隙比 液限/% 塑限/% 液性指数 塑性指数 32.06 0.397 55.11 15.11 0.42 40.00 (3)采用工程上常用的普通硅酸盐水泥,即P.O 42.5R水泥。
1.2 试验方法
考虑废砖细骨料掺量分别为0%,8%,10%和12%,水泥掺量分别为6%,8%和10%(均为黏土干质量的百分比)等多种情况,设置7 d和28 d两种养护龄期。每组配合比条件下分别制作3个压缩试样,测定其无侧限抗压强度。试样的制备步骤如下:
(1)混合底泥进行搅拌。加入计算所需的相应固化剂和细骨料,使用搅拌器匀速搅拌5 min制备一定含水率的黏土-水泥-废砖细骨料混合物,搅拌均匀后制成混合泥浆。
(2)开展试样制作。为方便后期脱模,在装入混合料前,在模具(直径为3.91 cm,高度为8 cm)内壁均匀涂上一层凡士林。将制备好的混合泥浆,分3次延模具壁一侧缓缓滑入,一次倒入1/3模具容积,每次倒入后作一段时间振捣,使小气泡从表面破出,避免内部气泡间隙对试样强度的影响。灌制满后,用刮刀进行刮平,铺垫保鲜膜后封盖。
(3)开展试样养护。将试样密封后置于充满水的水箱中,并放置在标准养护室(20±3℃,湿度>95%)内,养护至设计龄期。
2. 试验结果与分析
2.1 废砖细骨料掺量对强度的影响
图1为废砖细骨料掺量与无侧限抗压强度在水泥掺量在10%条件下的关系曲线图。由图1可知:当废砖细骨料掺量从10%增加到12%,试样强度均有了较大幅度的提升;但养护龄期为28 d增长率比7 d时略小。分析认为:当养护龄期达到28 d时,近似认为废砖细骨料中的水分达到饱和,此时细骨料的湿润度与周围水泥土湿润度相当,根据再生废砖骨料的吸水返水特性[9]分析可知,此时细骨料的返水能力比吸水能力强,双掺固化土中的水分会有所增加,故出现龄期为28 d的水泥-废砖细骨料双掺固化土的强度增长速率较7 d变缓的现象;在相同废砖细骨料掺量情况下,双掺固化土抗压强度随试样养护龄期的增加而增大,且28 d无侧限抗压强度相较7 d无侧限抗压强度平均提升了1.63倍。
2.2 水泥掺量对强度的影响
图2为废砖细骨料掺量在10%条件下,水泥掺量与无侧限抗压强度的关系曲线图。由图2可知:当养护龄期为7 d时,试样强度随水泥掺量的增加成线性增长;养护龄期为28 d,当水泥掺量大于8%时,强度增长速率有减小的趋势。分析认为:这一现象与废砖骨料的吸水返水特性有关;在相同水泥掺量情况下,双掺固化土抗压强度随试样养护龄期的增加而增大,且28 d无侧限抗压强度相较7 d无侧限抗压强度平均提升了约1.44倍。
2.3 双掺固化土与水泥固化土的对比
通过对两种固化土的强度特性进行对比分析(图3)发现,龄期为7 d的水泥固化土,随水泥掺量的增加成非直线增长,这与郑少辉等[3]分析不同水灰比固化土的强度所得研究结果相近,即当水泥剂量小于16%时无侧限抗压强度随水泥剂量的增加呈非线性增长。在两种养护龄期下,均出现双掺固化土强度的总体增长速率比水泥固化土强度增长速率高的现象。分析可知,再生废砖细骨料具有孔隙率高、吸水性强等特征,能够吸收土体中部分多余水分,且废砖细骨料含量越多吸水性越强,从而有效降低土体含水率,进而随之强化水泥在低含水率下的固化效率,加快了双掺固化土强度的形成。对7 d龄期条件,当水泥剂量大于等于8%时,废砖细骨料的掺入,明显提高了固化土的强度,说明要使废砖细骨料在改善固化土强度方面发挥作用,对水泥掺量存在一个最低剂量要求。
废砖细骨料为颗粒状,在固化土体中可视为游离状态,在制作无侧限抗压试样时,由于分层振捣处理导致废砖颗粒分布不均,形成的受力骨架也有所差异,故测出的强度不一,导致随着龄期和废砖细骨料含量的增长,强度的变异系数明显变大。
综上所述,在水泥剂量满足最低要求(本文测的最低剂量为8%)的情况下,废砖细骨料掺入和龄期增长都有利于固化土强度的提升;废砖细骨料的掺入,在增大固化土强度的同时也会增大固化土的变异性。
2.4 双掺固化土的破坏形态
图4为双掺固化土无侧限抗压强度试验的破坏形态。试样受压破坏后出现多条裂缝,主裂缝不突出不明显,破坏后试样破碎成块状,为塑性剪切破坏。故水泥-废砖细骨料双掺固化土的破坏形态主要表现为塑性剪切破坏。
2.5 压缩变形特性
图5为用水泥-废砖细骨料双掺法处理高含水率黏土的固化土应力-应变曲线图。由图可见其破坏应变分布在2.5%~3%,与水泥固化土的破坏应变一般介于0.5%~2%的认识[8, 11-14]有一定的偏差。分析其原因有两点:①由于废砖骨料在试样中成悬浮分布状态,当其掺量较小时,颗粒之间并没有形成骨架;②当骨料的湿润度与周围水泥土湿润度相当时,骨料表现出返水能力比吸水能力强的特性,使土体的水分略微增加所致。
图6为双掺固化土破坏应变与抗压强度的关系曲线。由图6可知,破坏应变随着抗压强度增大呈先略微减小后明显增大的趋势,这与其他学者得出的破坏应变随抗压强度增大而减小的试验结果[8, 10-14]有一定的偏差。分析其原因,主要是废砖的掺入使固化土的韧性在一定程度上得到提升。
3. 结论
(1)废砖细骨料对高含水率水泥固化土的强度有显著的提升效果,且早期强度增长速率比后期快。
(2)要发挥废砖细骨料的作用,水泥掺量需满足最低剂量8%的要求;掺入废砖细骨料在提高固化土强度的同时,也增加了固化土的变异性。控制变异性可提高其在工程建设上应用的安全可靠性。
(3)双掺法处理高含水率黏土固化土的破坏形态主要表现为塑性剪切破坏,其破坏应变在2.5%~3%,韧性比一般固化土的韧性好。
-
表 1 NMR试样T2谱总面积及孔隙率变化
Table 1 Total areas of T2 distribution and NMR porosities of red sandstone samples subjected to freeze-thaw cycles under different water contents
含水率/% 冻融循环次数N/次 T2谱总面积 谱面积变化率/% 孔隙率/% 1.5 30 13014 0 10.28 60 13711 5.36 10.83 90 14915 14.61 11.78 120 17972 38.10 14.19 2.4 30 13189 0 10.92 60 13965 5.88 11.87 90 16372 24.13 13.53 120 20476 55.25 16.14 3.78 30 14885 0 11.75 60 16885 13.44 13.33 90 19974 34.19 15.77 120 27608 85.48 21.80 表 2 不同含水率冻融后红砂岩长期剪切强度及长期折减系数
Table 2 Long-term shear strengths and reduction coefficients of red sandstone samples determined by steady creep rate method
含水率/% 冻融次数N/次 剪切蠕变长期强度τ∞/MPa 剪切蠕变破坏强度τf/MPa 长期折减系数(τ∞/τf) 0 0 41.74 45 0.928 30 41.51 44 0.943 60 33.91 38 0.892 90 29.40 33 0.891 120 28.43 32 0.888 1.5 0 35.77 42 0.852 30 34.48 40 0.862 60 29.46 34 0.866 90 26.02 30 0.867 120 20.31 24 0.846 3.78 0 35.34 41 0.862 30 25.01 30 0.834 60 19.19 24 0.800 90 18.36 24 0.765 120 13.35 18 0.742 表 3 不同含水率冻融0,60和120次后红砂岩剪切蠕变破坏形态
Table 3 Shear creep failure modes of red sandstone samples subjected to freeze-thaw cycles of 0, 60 and 120 under different water contents
含水率/% 冻融0次 冻融60次 冻融120次 断面特征 破坏形态 断面特征 破坏形态 断面特征 破坏形态 0 (干燥) 断面较为平整,断面四周保持较好的完整性 断面较为平整,颗粒间黏聚紧密,边缘出现轻微脱落现象 断面出现小部分面积的起伏,大体还算平整,边缘有轻微碎裂 1.5 (饱水) 断面上残留一部分错动擦痕,擦痕上夹杂着许多细微粉末,断面四周出现小部分脱落。 断面凹凸不平,上部还残留大块松动的颗粒碎片,四周岩块小面积脱落 断面粗糙度相较于冻融60次有所增加,四周岩块脱落面积更大 3.78 (饱和) 断面上粗糙度增加,上部残留着许多细微粉末,断面四周出现小部分脱落。 断面出现多组裂纹贯通,四周岩块大面积脱落 多个劈裂面相互组合,加上四周掉块严重,散碎程度大,成形度低 表 4 不同含水率冻融后红砂岩蠕变模型参数
Table 4 Identified parameters of red sandstone samples
含水率/% 剪应力/MPa Ge /GPaGve /GPaηve /(GPa·h-1)ηvs /(GPa·h-1)m n 1.5 6 0.61 1.68 0.35 — — — 12 1.55 13.81 3.71 — — — 18 1.18 25.22 9.59 — — — 24 2.05 32.55 11.32 15.2 7.6 1.2 3.78 6 0.25 1.47 0.13 — — — 12 1.27 11.6 2.51 — — — 18 1.54 19.75 7.16 8.3 9.8 3.2 -
[1] 李男, 徐辉, 胡斌. 干燥与饱水状态下砂岩的剪切蠕变特性研究[J]. 岩土力学, 2012, 33(2): 439-443. doi: 10.3969/j.issn.1000-7598.2012.02.019 LI Nan, XU Hui, HU Bin. Shear creep characteristics of sandstone under dry and saturated states[J]. Rock and Soil Mechanics, 2012, 33(2): 439-443. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.02.019
[2] 张泽林, 吴树仁, 王涛, 等. 甘肃天水泥岩剪切蠕变行为及其模型研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3603-3617. doi: 10.13722/j.cnki.jrme.2018.1518 ZHANG Ze-lin, WU Shu-ren, WANG Tao, et al. Study on shear creep behavior and its model of mudstone in Tianshui, Gansu Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3603-3617. (in Chinese) doi: 10.13722/j.cnki.jrme.2018.1518
[3] WANG X G, HU B, TANG H M, et al. A constitutive model of granite shear creep under moisture[J]. Journal of Earth Science, 2016, 27(4): 677-685. doi: 10.1007/s12583-016-0709-1
[4] MA C, ZHAN H B, YAO W M, et al. A new shear rheological model for a soft interlayer with varying water content[J]. Water Science and Engineering, 2018, 11(2): 131-138. doi: 10.1016/j.wse.2018.07.003
[5] 杨秀荣, 姜谙男, 江宗斌. 含水状态下软岩蠕变试验及损伤模型研究[J]. 岩土力学, 2018, 39(增刊1): 167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1021.htm YANG Xiu-rong, JIANG An-nan, JIANG Zong-bin. Creep test and damage model of soft rock under water containing condition[J]. Rock and Soil Mechanics, 2018, 39(S1): 167-174. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1021.htm
[6] WANG Y Y, WU Y, FAN X Y, et al. Study of the temperature dependence of the uniaxial creep property of similar material of new soft rock[J]. IOP Conference Series: Earth and Environmental Science, 2017, 93(1): 012022.
[7] HOU R, ZHANG K, TAO J, et al. A nonlinear creep damage coupled model for rock considering the effect of initial damage[J]. Rock Mechanics and Rock Engineering, 2018(2): 1-11.
[8] 王宇, 李建林, 刘锋. 坝基软弱夹层剪切蠕变及其长期强度试验研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3378-3384. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2050.htm WANG Yu, LI Jian-lin, LIU Feng. Experimental research on shear creep and its long-term strength of weak intercalation in dam foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3378-3384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2050.htm
[9] 刘文博, 张树光, 陈雷, 等. 基于统计损伤原理的岩石加速蠕变模型研究[J]. 岩土工程学报, 2020, 42(9): 1696-1704. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009020.htm LIU Wen-bo, ZHANG Shu-guang, CHEN Lei, et al. Accelerated creep model for rock based on statistical damage principle[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1696-1704. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009020.htm
[10] 熊良宵, 虞利军, 杨昌斌. 硬性结构面的剪切流变模型及试验数值分析[J]. 岩石力学与工程学报, 2015, 34(增刊1): 2894-2899. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1037.htm XIONG Liang-xiao, YU Li-jun, YANG Chang-bin. Shear rheological model for hard structural surface and test numerical analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2894-2899. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1037.htm
[11] 杨圣奇, 徐卫亚, 杨松林. 龙滩水电站泥板岩剪切流变力学特性研究[J]. 岩土力学, 2007, 28(5): 895-902. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200705008.htm YANG Sheng-qi, XU Wei-ya, YANG Song-lin. Investigation on shear rheological mechanical properties of shale in Longtan Hydropower Project[J]. Rock and Soil Mechanics, 2007, 28(5): 895-902. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200705008.htm
[12] 杨圣奇, 徐鹏. 一种新的岩石非线性流变损伤模型研究[J]. 岩土工程学报, 2014, 36(10): 1846-1854. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201410016.htm YANG Sheng-qi, XU Peng. A new nonlinear rheological damage model for rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1846-1854. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201410016.htm
[13] 赵延林, 唐劲舟, 付成成, 等. 岩石黏弹塑性应变分离的流变试验与蠕变损伤模型[J]. 岩石力学与工程学报, 2016, 35(7): 1297-1308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607001.htm ZHAO Yan-lin, TANG Jin-zhou, FU Cheng-cheng, et al. Rheological test of separation between viscoelastic-plastic strains and creep damage model[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1297-1308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607001.htm
[14] 李任杰, 吉锋, 冯文凯, 等. 隐伏非贯通结构面剪切蠕变特性及本构模型研究[J]. 岩土工程学报, 2019, 41(12): 2253-2261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912016.htm LI Ren-jie, JI Feng, FENG Wen-kai, et al. Shear creep characteristics and constitutive model of hidden non-persistent joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 41(12): 2253-2261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912016.htm
[15] 张峰瑞, 姜谙男, 杨秀荣, 等. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002022.htm ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, et al. Study of shear creep experiment and model of granite under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2020, 41(2): 509-519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002022.htm
[16] 申艳军, 杨更社, 荣腾龙, 等. 岩石冻融循环试验建议性方案探讨[J]. 岩土工程学报, 2016, 38(10): 1775-1782. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201610006.htm SHEN Yan-jun, YANG Geng-she, RONG Teng-long, et al. Proposed scheme for freeze-thaw cycle tests on rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1775-1782. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201610006.htm
[17] 沈为. 损伤力学[M]. 武汉: 华中理工大学出版社, 1995. SHEN Wei. Damage Mechanics[M]. Wuhan: Huazhong University of Technology Press, 1995. (in Chinese)
[18] 刘新喜, 李盛南, 周炎明, 等. 高应力泥质粉砂岩蠕变特性及长期强度研究[J]. 岩石力学与工程学报, 2020, 39(1): 138-146. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001014.htm LIU Xin-xi, LI Sheng-nan, ZHOU Yan-ming, et al. Study on creep behavior and long-term strength of argillaceous siltstone under high stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 138-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001014.htm
[19] 马芹永, 郁培阳, 袁璞. 干湿循环对深部粉砂岩蠕变特性影响的试验研究[J]. 岩石力学与工程学报, 2018, 37(3): 593-600. MA Qin-yong, YU Pei-yang, YUAN Pu. Experimental study on creep properties of deep siltstone under cyclic wetting and drying[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 593-600. (in Chinese)
-
期刊类型引用(3)
1. 肖源杰,王政,AMINU Umar Faruk,王萌,李昀博,孔坤锋,陈宇亮,周震,李志勇. 不同建筑固废再生骨料取代率下粗粒土填料永久变形特性及安定行为研究. 中南大学学报(自然科学版). 2024(03): 1008-1022 . 百度学术
2. 宾伟,黄靓,曾令宏,刘文琦,屈辉,彭龙辉,李东. 水泥固化再生骨料改性盐渍土的路用性能研究. 公路. 2024(08): 94-100 . 百度学术
3. 肖源杰,王政,AMINU Umar Faruk,王萌,李昀博,孔坤锋,陈宇亮,周震,李志勇. 不同建筑固废再生骨料取代率下粗粒土填料永久变形试验及预估模型. 中国公路学报. 2023(10): 17-29 . 百度学术
其他类型引用(12)