Degradation mechanism of intermittent jointed sandstone under water-rock interaction
-
摘要: 在库水位周期性升降作用下,库水消落带节理岩体的损伤劣化很可能导致库岸边坡向不稳定的方向发展。基于此,开展了断续节理砂岩的水–岩作用试验,结合力学试验和微细观结构检测综合分析其劣化规律及机理。结果显示:①在长期水–岩作用过程中,断续节理岩样的抗压强度、变形模量劣化趋势明显,而且存在明显非均匀性,其中前3个水-岩作用周期的阶段劣化度明显较大,5个水–岩作用周期之后的阶段劣化度明显减小并趋于稳定。②水–岩作用下,不同节理倾角岩样的力学参数劣化幅度不一样,阶段劣化度总体呈U型分布,节理倾角在0°和90°附近时,节理岩样从明显的张性破坏逐渐向剪性破坏转变,破坏模式变化特征比较明显,对应力学参数劣化幅度较大;节理倾角为60°左右时,节理岩样总体保持顺节理面的剪切破坏,破坏模式变化特征不明显,对应力学参数劣化幅度比较小,这些变化也使得节理岩样各向异性力学特征逐渐减弱。③在水库长期运行过程中,消落带节理岩体的产状直接影响水–岩作用的劣化趋势和变形破坏特征,因此,在库岸边坡长期变形稳定分析中,不仅要关注消落带岩体力学性质的劣化,也要关注节理岩体的产状差异及其在水–岩作用下变形破坏模式的转化。Abstract: Under the action of periodic rising and falling of reservoir water level, the damage and deterioration of the jointed rock mass in the hydro-fluctuation belt of a reservoir bank slope is likely to cause the reservoir bank slope to develop in an unstable direction. Based on this, the water-rock interaction tests on the intermittent joint sandstone are carried out. The degradation law and mechanism are comprehensively analyzed by combining the mechanical tests and the micro-structure detection. The results show that: (1) In the long-term process of water-rock interaction, the compressive strength and deformation modulus of intermittent jointed rock samples exhibit obvious tendency of deterioration, and there are obvious non-uniformity. Among them, the stage deterioration degree caused by the first three water-rock interaction periods is obviously larger, and the stage deterioration degree obviously decreases and tends to be stable after the five water-rock interaction periods. (2) Under the water-rock interaction, the mechanical parameters of different joint dip angles have different degradation degrees, and the overall distribution of stage deterioration degrees is U-shaped. When the joint dip angle is around 0° or 90°, the jointed rock sample changes from obvious tensile failure to shear one. The change characteristics of failure mode are obvious, and the corresponding mechanical parameters deteriorate greatly. When the joint dip angle is about 60°, the jointed rock sample maintains the shear failure of the joint plane as a whole, and the failure mode change characteristics are not obvious, and the corresponding mechanical parameters have a relatively small extent. These changes also make the anisotropic mechanical properties of jointed rock samples gradually weakened. (3) During the long-term operation of the reservoir bank slope, the occurrence of jointed rock mass in the hydro-fluctuation belt directly affects the deterioration trend and deformation and failure characteristics of the water-rock interaction. Therefore, in the long-term deformation stability analysis of the bank slope, attention should be paid to the deterioration of mechanical properties of rock mass in the hydro-fluctuation belt and the occurrence difference of jointed rock mass and transformation of its deformation and failure mode under water-rock interaction.
-
-
表 1 水-岩作用下断续节理砂岩破坏模式变化规律
Table 1 Changes in failure modes of jointed sandstone under water-rock interaction
单轴压缩 三轴压缩 节理倾角 初始状态 水–岩作用后 破坏模式变化 初始状态 水–岩作用后 破坏模式变化 0° 经过节理端部的张拉破坏向张剪破坏转变,裂纹扩展角减小,节理端部诱发的次生裂纹数量减少,局部掉块现象逐渐减少。 经过节理端部的控制性裂纹扩展角逐渐减小,次生裂纹减少,剪性破坏特征逐渐明显。 30°,45° 始于节理端部的控制性裂纹扩展角逐渐减小,张性破坏逐特征减弱,剪性破坏特征逐渐增强,次生裂纹数量逐渐减少。 控制性裂纹从节理端部向试样两端发展,形成包括节理在内的复合折线形剪切破坏,裂纹扩展角逐渐减小,节理对破裂面的诱导作用增强,节理端部的次生裂纹逐渐减少。 60°,75° 顺节理面方向的剪切破坏,始于节理端部的次生张拉裂纹逐渐减少,裂纹扩展角逐渐减小。 顺节理面方向的剪切破坏,节理端部的次生裂纹逐渐减少,裂纹扩展角逐渐减小。 90° 张拉破坏向张剪破坏转变,裂纹扩展角逐渐减小,次生裂纹数量逐渐减少。 始于节理端部的复合张剪破坏向剪切破坏转变,次生裂纹数量逐渐减少。 -
[1] 王思敬, 马凤山, 杜永康. 水库地区的水-岩作用及其地质环境的影响[J]. 工程地质学报, 1996, 4(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ603.000.htm WANG Si-jing, MA Feng-shan, DU Yong-kang. The rock-water interaction in reservoir areas and its geoenvironmental effect[J]. Journal of Engineering Geology, 1996, 4(3): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ603.000.htm
[2] 王士天, 刘汉超, 张倬元. 大型水域水岩相互作用及其环境效应研究[J]. 地质灾害与环境保护, 1997, 8(1): 69-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB701.005.htm WANG Shi-tian, LIU Han-chao, ZHANG Zhuo-yuan. Study on interaction and environmental effects of water rocks in large water bodies[J]. Journal of Geological Hazard and Environmental Preservation, 1997, 8(1): 69-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB701.005.htm
[3] HALE P A, SHAKOOR A. A laboratory investigation of the effects of cyclic heating and cooling, wetting and drying, and freezing and thawing on the compressive strength of selected sandstones[J]. Environmental and Engineering Geoscience, 2003, 9(2): 117-130. doi: 10.2113/9.2.117
[4] 刘新荣, 傅晏, 王永新, 等. (库)水-岩作用下砂岩抗剪强度劣化规律的试验研究[J]. 岩土工程学报, 2008, 30(9): 1298-1302. doi: 10.3321/j.issn:1000-4548.2008.09.006 LIU Xin-rong, FU Yan, WANG Yong-xin, et al. Deterioration rules of shear strength of sand rock under water-rock interaction of reservoir[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1298-1302. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.09.006
[5] 傅晏, 袁文, 刘新荣, 等. 酸性干湿循环作用下砂岩强度参数劣化规律[J]. 岩土力学, 2018, 39(9): 3331-3339. doi: 10.16285/j.rsm.2016.2711 FU Yan, YUAN Wen, LIU Xin-rong, et al. Deterioration rules of strength parameters of sandstone under cyclical wetting and drying in acid-based environment[J]. Rock and Soil Mechanics, 2018, 39(9): 3331-3339. (in Chinese) doi: 10.16285/j.rsm.2016.2711
[6] 邓华锋, 张恒宾, 李建林, 等. 水-岩作用对砂岩卸荷力学特性及微观结构的影响[J]. 岩土力学, 2018, 39(7): 2344-2352. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807005.htm DENG Hua-feng, ZHANG Heng-bin, LI Jian-lin, et al. Effect of water-rock interaction on unloading mechanical properties and microstructure of sandstone[J]. Rock and Soil Mechanics, 2018, 39(7): 2344-2352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807005.htm
[7] 姚华彦, 张振华, 朱朝辉. 干湿交替对砂岩力学特性影响的试验研究[J]. 岩土力学, 2010, 31(12): 3704-3708. doi: 10.3969/j.issn.1000-7598.2010.12.002 YAO Hua-yan, ZHANG Zhen-hua, ZHU Chao-hui. Experimental study of mechanical properties of sandstone under cyclic drying and wetting[J]. Rock and Soil Mechanics, 2010, 31(12): 3704-3708. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.12.002
[8] 张吟钗. 水库地震和水-岩作用对库岸边坡动力响应特征的影响研究[D]. 宜昌: 三峡大学, 2019. ZHANG Yin-chai. Study on Dynamic Response Characteristics of Reservoir Bank Slope under the Influence of Reservoir Earthquake and Water-rock Interaction[D]. Yichang: China Three Gorges University, 2019. (in Chinese)
[9] 王子娟. 干湿循环作用下砂岩的宏细观损伤演化及本构模型研究[D]. 重庆: 重庆大学, 2016. WANG Zi-juan. Macroscopic and Microscopic Damage Evolution and Constitutive Model of Sandstone Under Dry-Wet Cycle[D]. Chongqing: Chongqing University, 2016. (in Chinese)
[10] FANG Jing-cheng, DENG Hua-feng, QI Yu, et al. Analysis of changes in the micro morphology of sandstone joint surface under dry-wet cycling[J]. Advances in Materials Science and Engineering, 2019(1): 1-11.
[11] 申培武, 唐辉明, 汪丁建, 等. 巴东组紫红色泥岩干湿循环崩解特征试验研究[J]. 岩土力学, 2017, 38(7): 1990-1998. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707019.htm SHEN Pei-wu, TANG Hui-ming, WANG Ding-jian, et al. Disintegration characteristics of red-bed mudstone of Badong Formation under wet-dry cycles[J]. Rock and Soil Mechanics, 2017, 38(7): 1990-1998. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707019.htm
[12] HU M, LIU Y, REN J, et al. Laboratory test on crack development in mudstone under the action of dry-wet cycles[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(1): 543-556.
[13] 柴波, 殷坤龙, 简文星, 等. 红层水岩作用特征及库岸失稳过程分析[J]. 中南大学学报(自然科学版), 2009, 40(4): 1092-1098. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200904043.htm CHAI Bo, YIN Kun-long, JIAN Wen-xing, et al. Analysis of water-rock interaction characteristics and bank slope failure process of red-bed[J]. Journal of Central South University (Science and Technology), 2009, 40(4): 1092-1098. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200904043.htm
[14] DENG H F, ZHOU M L, LI J L, et al. Creep degradation mechanism by water-rock interaction in the red-layer soft rock[J]. Arabian Journal of Geosciences, 2016, 9(12): 1-12.
[15] ALT-EPPING P, DIAMOND L W, HARING M O, et al. Prediction of water-rock interaction and porosity evolution in a granitoid-hosted enhanced geothermal system, using constraints from the 5 km Basel-1 well[J]. Applied Geochemistry, 2013, 38: 121-133.
[16] 王伟, 龚传根, 朱鹏辉, 等. 大理岩干湿循环力学特性试验研究[J]. 水利学报, 2017, 48(10): 1175-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201710006.htm WANG Wei, GONG Chuan-gen, ZHU Peng-hui, et al. Experimental study on mechanical properties of marble under hydraulic weathering coupling[J]. Journal of Hydraulic Engineering, 2017, 48(10): 1175-1184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201710006.htm
[17] JENG F S, LIN M L, HUANG T H. Wetting deterioration of soft sandstone—microscopic insights[C]//An International Conference on Geotechnical and Geological Engineering, 2000, Melbourne.
[18] 周翠英, 邓毅梅, 谭祥韶, 等. 软岩在饱水过程中微观结构变化规律研究[J]. 中山大学学报(自然科学版), 2003, 42(4): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200304024.htm ZHOU Cui-ying, DENG Yi-mei, TAN Xiang-shao, et al. Research on the variation regularities of microstructures in the testing of interaction between soft rocks and water[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2003, 42(4): 98-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200304024.htm
[19] LIN M L, JENG F S, TSAI L S, et al. Wetting weakening of tertiary sandstones-microscopic mechanism[J]. Environ Geol, 2005, 48: 265-275.
[20] 邓华锋, 支永艳, 段玲玲, 等. 水-岩作用下砂岩力学特性及微细观结构损伤演化[J]. 岩土力学, 2019, 40(9): 3447-3456. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm DENG Hua-feng, ZHI Yong-yan, Duan Ling-ling, et al. Research on the mechanical properties of sandstone and the damage evolution of microstructure under water-rock interaction[J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909017.htm
[21] 孙广忠. 岩体结构力学[M]. 北京: 科学出版社, 1988. SUN Guang-zhong. The Foundation of Mechanics on Rock Mass Structure[M]. Beijing: Science Press, 1988. (in Chinese)
[22] MÜLLER L. Rock Mechanics[M]. Beijing: China Coal Industry Publishing House, 1981.
[23] 李鹏, 刘建, 朱杰兵, 等. 软弱结构面剪切蠕变特性与含水率关系研究[J]. 岩土力学, 2008, 29(7): 1865-1871. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200807030.htm LI Peng, LIU Jian, ZHU Jie-bing, et al. Research on effects of water content on shear creep behavior of weak structural plane of sandstone[J]. Rock and Soil Mechanics, 2008, 29(7): 1865-1871. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200807030.htm
[24] 李超, 齐豫, 李涛, 等. 库岸边坡水-岩作用对节理砂岩力学特性影响研究[J]. 水利水电技术, 2019, 50(6): 163-168. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201906022.htm LI Chao, QI Yu, LI Tao, et al. Study on influence of water-rock interaction of reservoir bank slope on mechanical characteristics of jointed sandstone[J]. Water Resources and Hydropower Engineering, 2019, 50(6): 163-168. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201906022.htm
[25] 王乐华, 柏俊磊, 李建林, 等. 非贯通节理岩体单轴压缩试验研究[J]. 水利学报, 2014, 45(12): 1410-1418. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201412003.htm WANG Le-hua, BAI Jun-lei, LI Jian-lin, et al. Study of non-consecutive jointed rock mass under uniaxial compression[J]. Journal of Hydraulic Engineering, 2014, 45(12): 1410-1418. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201412003.htm
[26] 邓华锋, 潘登, 许晓亮, 等. 三轴压缩作用下断续节理砂岩力学特性研究[J]. 岩土工程学报, 2019, 41(11): 2133-2141. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911023.htm DENG Hua-feng, PAN Deng, XU Xiao-liang, et al. Mechanical characteristics of intermittent jointed sandstone under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2133-2141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911023.htm
[27] 工程岩体试验方法标准:GB/T 50266—2013[S]. 2013. Standard for Tests Method of Engineering Rock Masses: GB/T 50266—2013[S]. 2013. (in Chinese)
[28] SINGH J, RAMAMURTHY T, RAO G V. Strength anisotropies in rocks[J]. Indian Geotechnical Journal, 1989, 19(2): 147-66.